
§1 PHASE2PRUNE INTRODUCTION 1

1. Introduction. Phase two of Kociemba’s two-phase algorithm involves finding a solution to a position
in the group H generated by {U,F2, R2, D,B2, L2}. This file constructs a pruning table for that group.

This group has size 12! · 12! · 4!/2 or 19,508,428,800 and distance values from 0 to 18. If we allocate a byte
per entry, we’d need 20GB of core for the pruning table—this is unreasonably large.

The purpose of this pruning table in the two-phase algorithm is two-fold. Remember that during the phase
one search, every sequence found leads to some position p in the H group. The first use of the phase two
table is to look up an exact or conservative estimate of the distance remaining to solved, and add that to
the length of the phase one sequence, and see if that sum is less than the length of the current best solution
so far. If it is not, we can immediately reject that phase one solution and go on to the next.

If the phase one solution was not rejected, then we need to use the pruning table to find a phase two
solution, completing the overall solution to the original position. If the pruning table always has exact
distances, this is guaranteed to succeed. If the pruning table only gives conservative approximations of the
distance, this may fail.

The phase two solution is found using standard iterated depth-first search, at each node of the tree looking
up the current position in the pruning table and rejecting that branch of the search if the distance from the
table indicates there is no solution in the given number of moves.

Our main concern is reducing the size of the table. The first technique is to use the 16-way symmetry
of H to reduce the table by only storing a single representative of each symmetry class. This reduces the
memory requirements from about 20GB down to about 1.2GB; this is still quite large.

We do not require an exact table, however, so we can hash the state down into a smaller range. Remember
that all positions in H have a solved orientation (subject to the conventions we laid out in cubepos) and the
middle four cubies are in the middle four slots. The group is defined by the permutation of the eight corners,
the permutation of the eight edges whose home position is not in the middle layer, and the permutation of
the four edges whose home position is the middle layer, subject to the requirement that the parity of the
overall permutation of the edges must match the parity of the permutation of the corners.

If you hash the state into a smaller range, thus mapping multiple elements of the group to the same table
entry, you must put the smallest distance of any of the elements that map into that entry, because the
pruning table must give a conservative estimate of the distance. For most ways to reduce the size of the
table, this gives a marked reduction in average depth, and thus a marked decrease in the effectiveness of the
table; this is the tradeoff for saving space. In this case, however, we can eliminate the permutation of the
middle edges from consideration without significantly decreasing the average distance; the resulting table is
4!/2 or 12 times smaller.

The reason this is so is that most optimal sequences that solve a particular position inH can be transformed
into other sequences of the same length that solve other positions in H, but positions that differ only in
the middle edge permutation These other sequences are not always optimal, but frequently they are. To
understand why this is so, consider that the moves U1, U2, U3, D1, D2, and D3 do not affect the middle
edges at all. Indeed, the move U1 is the same as the move D1 followed by a whole cube rotation clockwise
from the top, if we only consider the top and bottom cubies and ignore the middle edges and center cubies.
So any sequence that looks like αU1β can be transformed into a different sequence αD1β′ that has the same
overall effect on the top and bottom edges and corners (plus a whole cube rotation). Since a typical solution
to a position in H has many U and D moves that can be so rotated, there are many distinct sequences that
can be directly derived from the optimal sequence that generate other moves in H that differ only in whole
cube rotations and effect on the middle layer. There are only four possible whole cube rotation states if you
limit yourself to rotations around the up-down axis, so even when you limit yourself to those sequences that
end up with the center cubies where you started, you frequently have many sequences left.

The following table gives the distance distribution both for the group H and the smaller group H ′

generated by actions from H on a representation that omits the middle edges altogether. You’ll note that
the percentages and the average depth is reasonably close.

2 INTRODUCTION PHASE2PRUNE §1

Distance H H ′

0 1 1
1 10 10
2 67 67
3 456 420
4 3,079 2,335
5 19,948 12,260
6 123,074 61,038
7 736,850 291,004
8 4,185,118 1,327,429 0.1%
9 22,630,733 0.1% 5,821,374 0.4%

10 116,767,872 0.6% 24,141,784 1.5%
11 552,538,680 2.8% 89,480,354 5.5%
12 2,176,344,160 11.2% 262,907,144 16.2%
13 5,627,785,188 28.8% 485,409,604 29.9%
14 7,172,925,794 36.8% 508,704,668 31.3%
15 3,608,731,814 18.5% 232,904,952 14.3%
16 224,058,996 1.1% 14,508,468 0.9%
17 1,575,608 129,376
18 1,352 112

Average 13.58 13.29

A 12-fold decrease in table size, with only a 0.29 reduction in average distance, is remarkable. The only
similar reduction I’m aware of with Rubik’s cube is the reduction from corners-with-centers to corners-
without-centers (the 2x2x2), and the reasoning is similar.

The final improvement we make is to use only four bits for each entry, which we use to represent values 1
through 16. A value of zero can be inferred by inspection, and there are very few positions at 17 or greater.

This class depends on cubepos and kocsymm, so if you haven’t read those yet, now might be a good
time.
〈 phase2prune.h 1 〉 ≡
#ifndef PHASE2PRUNE_H

#define PHASE2PRUNE_H

#include "kocsymm.h"

See also section 2.

2. We have an initialization routine and a lookup routine. The initialization routine is not called at
construction time, so you can declare this class statically but control when it is initialized. (Initialization
may include generation or loading of the pruning table, which can be a lengthy operation.) There are no
actual fields or non-static methods; everything in this class is static.
〈 phase2prune.h 1 〉 +≡

const int FACT8 = 40320;
class phase2prune {
public:

static void init (int suppress writing = 0);
static int lookup(const cubepos &cp);
static int lookup(const permcube &pc);
〈Method declarations 12 〉
〈Data declarations 6 〉
};

#endif

§3 PHASE2PRUNE INTRODUCTION 3

3. For the body of the initialization routine, we need to declare the C++ file at last. In our initialization
routine, we pass a flag indicating whether or not to suppress the writing of the pruning table to disk.
〈 phase2prune.cpp 3 〉 ≡
#include "phase2prune.h"

#include <iostream>

#include <cstdio>

using namespace std;
〈Data instantiations 4 〉
〈Utility methods 5 〉
〈Method bodies 11 〉
void phase2prune :: init (int suppress writing)
{

static int initialized = 0;
if (initialized) return;
initialized = 1;
〈 Initialize the instance 8 〉
}

4. When we lookup a cubepos in this pruning table, the first thing to do is to compute a canonical repre-
sentative. We cannot use the normal cubepos canonicalization, because that takes orientation into account,
and this pruning table must not. Instead, we use the corner permutation (as calculated by permcube) to
select a canonical coordinate. For each corner permutation, we need to store the m ∈ M remapping, the
reduced corner permutation coordinate, and the set of bits that give what remappings generate that mini-
mum coordinate. This is like corner mapinfo in kocsymm, except the minimum coordinate will not fit in
an unsigned char. This array has size 160K, but this is dwarfed by the actual pruning table itself.

When we generate the pruning table, we will use the corner calculates as the outer loop (since that’s what
we are remapping by) and use the edge permutation as the inner loop. To make this reasonably fast, we
need a table that can remap an edge up/down permutation. This is not a small table, but it’s also dwarfed
by the pruning table.
〈Data instantiations 4 〉 ≡

struct corner reduce {
unsigned char m, parity ;
lookup type c, minbits ;
} corner reduction [FACT8];
lookup type edgeud remap [KOCSYMM][FACT8];

See also sections 7 and 18.

This code is used in section 3.

4 INTRODUCTION PHASE2PRUNE §5

5. Filling out the corner reduction array is fairly straightforward; we use the existing classes cubepos
and permcube to do the work. First we need a particular ordering of the corner elements of permcube;
this is somewhat arbitrary.
〈Utility methods 5 〉 ≡

inline int corner coordinate (const permcube &pc)
{

return (pc .c8 4 ∗ FACT4 + pc .ctp) ∗ FACT4 + pc .cbp ;
}
inline int edge coordinate (const permcube &pc)
{

return (permcube ::c12 8 [pc .et] ∗ FACT4 + pc .etp) ∗ FACT4 + pc .ebp ;
}

See also section 19.

This code is used in section 3.

6. Once we know how many symmetry-reduced coordinates there are, we also know how much memory
we need. We declare a variable to hold that value here, as well as our memory array pointer.
〈Data declarations 6 〉 ≡

static int cornermax ;
static unsigned int memsize ;
static unsigned int ∗mem ;

See also section 17.

This code is used in section 2.

7. We need to declare all of these instances.
〈Data instantiations 4 〉 +≡

int phase2prune ::cornermax ;
unsigned int phase2prune ::memsize ;
unsigned int ∗phase2prune ::mem ;

§8 PHASE2PRUNE INTRODUCTION 5

8. Now we try all possibilities.
〈 Initialize the instance 8 〉 ≡

cornermax = 0;
for (int c8 4 = 0; c8 4 < C8_4; c8 4 ++)

for (int ctp = 0; ctp < FACT4; ctp ++)
for (int cbp = 0; cbp < FACT4; cbp ++) {

permcube pc ;
pc .c8 4 = c8 4 ;
pc .ctp = ctp ;
pc .cbp = cbp ;
int oc = corner coordinate (pc);
int minc = oc ;
int minm = 0;
int minbits = 1;
cubepos cp ;
pc .set perm (cp);
for (int m = 1; m < 16; m++) {

cubepos cp2 ;
cp .remap into(m, cp2);
permcube pc2 (cp2);
int tc = corner coordinate (pc2);
if (tc < minc) {

minc = tc ;
minm = m;
minbits = 1� m;

}
else if (tc ≡ minc) minbits |= 1� m;
}
corner reduce &cr = corner reduction [oc];
if (oc ≡ minc) cr .c = cornermax ++;
cr .m = minm ;
cr .c = corner reduction [minc].c;
cr .minbits = minbits ;
cr .parity = (permcube ::c8 4 parity [c8 4] + ctp + cbp) & 1;

}
See also sections 9, 10, and 23.

This code is used in section 3.

6 INTRODUCTION PHASE2PRUNE §9

9. Next we initialize the remapping of the edge coordinates.
〈 Initialize the instance 8 〉 +≡

int at = 0;
cubepos cp , cp2 ;
for (int e8 4 = 0; e8 4 < C8_4; e8 4 ++) {

permcube pc ;
pc .et = permcube ::c8 12 [e8 4];
pc .eb = kocsymm ::epsymm compress [#f0f− kocsymm ::epsymm expand [pc .et]];
for (int etp = 0; etp < FACT4; etp ++) {

pc .etp = etp ;
for (int ebp = 0; ebp < FACT4; ebp ++, at ++) {

pc .ebp = ebp ;
for (int m = 0; m < KOCSYMM; m++) {

pc .set edge perm (cp);
cp .remap into(m, cp2);
permcube pc2 (cp2);
edgeud remap [m][at] = edge coordinate (pc2);
}

}
}
}

10. We continue our initialization with allocation of the memory array. We store two bytes per entry.
〈 Initialize the instance 8 〉 +≡

memsize = cornermax ∗ (FACT8/2);
mem = (unsigned int ∗) malloc(memsize);
if (mem ≡ 0)

error ("! no memory in phase2prune") ;

§11 PHASE2PRUNE LOOKING UP A POSITION 7

11. Looking up a position. We write our lookup routine carefully, inlining the portions of the remap
and coordinate calculation code we really need. Even with this care, this code will probably encounter
numerous cache misses in a single lookup because of the large tables in use.
〈Method bodies 11 〉 ≡

int phase2prune :: lookup(const cubepos &cp)
{

permcube pc(cp);
return lookup(pc);
}
int phase2prune :: lookup(const permcube &pc)
{

int cc = corner coordinate (pc);
corner reduce &cr = corner reduction [cc];
int off = cr .c ∗ FACT8 + edgeud remap [cr .m][edge coordinate (pc)];
int r = (mem [off � 3]� (4 ∗ (off & 7))) & #f;
if (r ≡ 0 ∧ pc ≡ identity pc) return 0;
else return r + 1;
}

See also sections 13, 20, 21, 22, and 25.

This code is used in section 3.

8 GENERATING THE PRUNING TABLE PHASE2PRUNE §12

12. Generating the pruning table. We need a routine to generate the pruning table. To do this,
we initialize the solved position to the value 0 and all other positions to the value 15. Then for values of d
from 0 to 13, we find all positions at that depth, compute their neighbors, and if their neighbors are so far
unseen, set the depth to d+ 1. Since we share the representations of distances 0 and 1 using the value 0 in
the array, we actually initialize the start with a value of 1, and after the first iteration, we reset that back
to 0.
〈Method declarations 12 〉 ≡

static void gen table ();
static int read table ();
static void write table ();
static void check integrity ();

See also section 24.

This code is used in section 2.

13. There is one major subtlety when generating pruning tables that depend on symmetry like this one:
we don’t want to have to do a full symmetry reduction on every lookup; we just want to reduce symmetry
by the corner permutation. The tricky thing then is whenever our destination corner permutation has any
symmetry, we must be sure to compute and update all relevant symmetry values for that element.
〈Method bodies 11 〉 +≡

void phase2prune ::gen table ()
{

memset (mem , 255,memsize);
cout � "Gen phase2" � flush ;
mem [0] &= ∼14;
int seen = 1;
for (int d = 0; d < 15; d++) {

unsigned int seek = (d ? d− 1 : 1);
int newval = d;
for (int c8 4 = 0; c8 4 < C8_4; c8 4 ++)

for (int ctp = 0; ctp < FACT4; ctp ++)
for (int cbp = 0; cbp < FACT4; cbp ++) {

permcube pc ;
pc .c8 4 = c8 4 ;
pc .ctp = ctp ;
pc .cbp = cbp ;
int oc = corner coordinate (pc);
corner reduce &cr = corner reduction [oc];
if (cr .minbits & 1) {
〈 Iterate over all moves 14 〉;

}
}

#ifndef QUARTER

if (d ≡ 0) mem [0] &= ∼15;
#endif

cout � " " � d� flush ;
}
cout � " done." � endl � flush ;
}

§14 PHASE2PRUNE GENERATING THE PRUNING TABLE 9

14. Try all the different moves from this corner position. Note that we only handle half turn metric at
the moment. In any case, hoist the destination corner permutation computation to the top of the loop. We
also calculate offsets from both the source and the destination rows.
〈 Iterate over all moves 14 〉 ≡

permcube pc2 , pc3 , pc4 ;
cubepos cp2 , cp3 ;
int off = corner reduction [oc].c ∗ (FACT8/8);
for (int mv = 0; mv < NMOVES; mv ++) {

if (¬kocsymm :: in Kociemba group(mv)) continue;
pc2 = pc ;
pc2 .move (mv);
int dest off = corner coordinate (pc2);
corner reduce &cr = corner reduction [dest off];
int destat = cr .c ∗ (FACT8/8);
for (int m = cr .m; (1� m) ≤ cr .minbits ; m++)

if ((cr .minbits � m) & 1) {〈Scan one row 15 〉}
}

This code is used in section 13.

15. When we scan a row, we need to work on the 8! possible permutations of the edge cubies, doing a
move and a remapping on each. For efficiency we embed parts of the permcube move routine in here. We
accelerate the scan if we see a bunch of unset values.
〈Scan one row 15 〉 ≡

int at = 0;
for (int e8 4 = 0; e8 4 < C8_4; e8 4 ++) {

int et = permcube ::c8 12 [e8 4];
int t1 = permcube ::eperm move [et][mv];
int eb = kocsymm ::epsymm compress [#f0f− kocsymm ::epsymm expand [et]];
int t2 = permcube ::eperm move [eb][mv] & 31;
int dst1 = permcube ::c12 8 [t1 � 5] ∗ 24 ∗ 24;
t1 &= 31;
for (int etp = 0; etp < FACT4; etp ++)

for (int ebp = 0; ebp < FACT4; ebp ++, at ++) {
if (mem [off + (at � 3)] ≡ #ffffffff) {

ebp += 7;
at += 7;
}
else if (((mem [off + (at � 3)]� (4 ∗ (at & 7))) & #f) ≡ seek) {〈Handle one position 16 〉}

}
}

This code is used in section 14.

10 GENERATING THE PRUNING TABLE PHASE2PRUNE §16

16. We’ve found a single position at the distance we seek. Find all of its neighbors, and check if this is a
newly reached value.
〈Handle one position 16 〉 ≡

int etp1 = permcube ::s4mul [etp][t1];
int ebp1 = permcube ::s4mul [ebp][t2];
int dat = edgeud remap [m][dst1 + etp1 ∗ 24 + ebp1];
int val = (mem [destat + (dat � 3)]� (4 ∗ (dat & 7))) & #f;
if (val ≡ #f) {

mem [destat + (dat � 3)] −= (#f− newval)� (4 ∗ (dat & 7));
seen ++;
}

This code is used in section 15.

§17 PHASE2PRUNE DISK I/O 11

17. Disk I/O. The pruning table takes a fair amount of time to generate (about 40 seconds on modern
hardware), and I’m frequently impatient, so we add some routines to read and write the pruning table to a
file on disk.
〈Data declarations 6 〉 +≡

static const char ∗const filename ;
static int file checksum ;

18. We choose the filename below, to indicate version 1 of the phase 2 pruning data, halfturn metric.
〈Data instantiations 4 〉 +≡

const char ∗const phase2prune ::filename = "p2p1h.dat";
int phase2prune ::file checksum ;

19. We need a routine to do a checksum of the file, to verify integrity. We use a simplistic hash function.
We make it file static; we might use a different one in a different file.
〈Utility methods 5 〉 +≡

static int datahash (unsigned int ∗dat , int sz , int seed)
{

while (sz > 0) {
sz −= 4;
seed = 37 ∗ seed + ∗dat ++;

}
return seed ;
}

12 DISK I/O PHASE2PRUNE §20

20. Our read routine is straightforward; we return 1 on success, and 0 on failure. We could read the whole
thing at once and then checksum it afterwards, but we choose to do it in chunks that fit in cache. The "rb"

in the fopen call is to force binary mode on Windows platforms.
〈Method bodies 11 〉 +≡

const int CHUNKSIZE = 65536;
int phase2prune ::read table ()
{

FILE ∗f = fopen (filename , "rb");
if (f ≡ 0) return 0;
int togo = memsize ;
unsigned int ∗p = mem ;
int seed = 0;
while (togo > 0) {

unsigned int siz = (togo > CHUNKSIZE ? CHUNKSIZE : togo);
if (fread (p, 1, siz , f) 6= siz) {

cerr � "Out of data in " � filename � endl ;
fclose (f);
return 0;

}
seed = datahash (p, siz , seed);
togo −= siz ;
p += siz /sizeof (unsigned int);

}
if (fread (&file checksum , sizeof (int), 1, f) 6= 1) {

cerr � "Out of data in " � filename � endl ;
fclose (f);
return 0;

}
fclose (f);
if (file checksum 6= seed) {

cerr � "Bad checksum in " � filename � "; expected " � file checksum � " but saw " �
seed � endl ;

return 0;
}
return 1;
}

§21 PHASE2PRUNE DISK I/O 13

21. Our write routine is the converse of the above. We checksum as we write. Any error is fatal. The
"wb" in the fopen call is to force binary mode on Windows platforms.
〈Method bodies 11 〉 +≡

void phase2prune ::write table ()
{

FILE ∗f = fopen (filename , "wb");
if (f ≡ 0)

error ("! cannot write pruning file to current directory") ;
if (fwrite (mem , 1,memsize , f) 6= memsize)

error ("! error writing pruning table") ;
if (fwrite (&file checksum , sizeof (int), 1, f) 6= 1)

error ("! error writing pruning table") ;
fclose (f);
}

22. We add a routine to check the integrity of the pruning table, perhaps at the end of a long run. Any
error is fatal.
〈Method bodies 11 〉 +≡

void phase2prune ::check integrity ()
{

if (file checksum 6= datahash (mem ,memsize , 0))
error ("! integrity of pruning table compromised") ;

cout � "Verified integrity of phase two pruning data: " � file checksum � endl ;
}

23. We now finish our initialization with the routines that read and/or generate the file.
〈 Initialize the instance 8 〉 +≡

if (read table () ≡ 0) {
gen table ();
file checksum = datahash (mem ,memsize , 0);
if (¬suppress writing) write table ();
}

24. We need a solver for random positions. It takes a maximum distance for which the solution is useful.
If there is no solution, it returns an empty vector (it’s up to you to distinguish the case where the position
is already solved). We also declare a utility routine that actually does the recursion.
〈Method declarations 12 〉 +≡

static moveseq solve (const permcube &pc , int maxlen = 30);
static moveseq solve (const cubepos &cp , int maxlen = 30)
{

permcube pc(cp);
return solve (pc ,maxlen);
}
static int solve (const permcube &pc , int togo , int canonstate ,moveseq &seq);

14 DISK I/O PHASE2PRUNE §25

25. And here we have the standard implementation of iterated depth-first search. The magic ◦227227227
below filters out moves that are not in H all at once in the half turn metric.
〈Method bodies 11 〉 +≡

moveseq phase2prune ::solve (const permcube &pc , int maxlen)
{

moveseq r;
for (int d = lookup(pc); d ≤ maxlen ; d++)

if (solve (pc , d, CANONSEQSTART, r)) {
reverse (r.begin (), r.end ());
break;

}
return r;
}
int phase2prune ::solve (const permcube &pc , int togo , int canonstate ,moveseq &r)
{

if (lookup(pc) > togo) return 0;
if (pc ≡ identity pc) return 1;
if (togo−− ≤ 0) return 0;
permcube pc2 ;
int mask = cubepos ::cs mask (canonstate) & ◦227227227 ;
while (mask) {

int ntogo = togo ;
int mv = ffs (mask)− 1;
mask &= mask − 1;
pc2 = pc ;
pc2 .move (mv);
if (solve (pc2 ,ntogo , cubepos ::next cs (canonstate ,mv), r)) {
r.push back (mv);
return 1;

}
}
return 0;
}

§26 PHASE2PRUNE DISK I/O 15

26. Test routine.
〈 phase2prune_test.cpp 26 〉 ≡
#include "phase2prune.h"

#include <iostream>

using namespace std;
char buf [4096];
int main (int argc , char ∗argv [])
{

if (lrand48 () ≡ 0) srand48 (time (0));
phase2prune :: init (0);
phase2prune ::check integrity ();
cubepos cp ;
for (int i = 0; i < 100000; i++) {

char ∗tmp ;
int mv = random move ();
if (kocsymm :: in Kociemba group(mv)) {

cp .movepc(mv);
}
int lookd = phase2prune :: lookup(cp);
cout � "Distance " � lookd � endl ;
moveseq s = phase2prune ::solve (cp);
cubepos cpt = cp ;
for (unsigned int j = 0; j < s.size (); j++) cpt .movepc(s[j]);
cubepos ::append moveseq (tmp = buf , s);
cout � "Solution length " � s.size ()� " " � buf � endl ;
if (cpt 6= identity cube)

error ("! bad solve") ;
if ((unsigned int) lookd > s.size ())

error ("! solution too short") ;
}
}

append moveseq : 26.
argc : 26.
argv : 26.
at : 9, 15.
begin : 25.
buf : 26.
c: 4.
CANONSEQSTART: 25.
canonstate : 24, 25.
cbp : 5, 8, 13.
cc : 11.
cerr : 20.
check integrity : 12, 22, 26.
CHUNKSIZE: 20.
corner coordinate : 5, 8, 11, 13, 14.
corner mapinfo : 4.
corner reduce: 4, 8, 11, 13, 14.
corner reduction : 4, 8, 11, 13, 14.

cornermax : 6, 7, 8, 10.
cout : 13, 22, 26.
cp : 2, 8, 9, 11, 24, 26.
cpt : 26.
cp2 : 8, 9, 14.
cp3 : 14.
cr : 8, 11, 13, 14.
cs mask : 25.
ctp : 5, 8, 13.
cubepos: 1, 2, 4, 5, 8, 9, 11, 14, 24, 25, 26.
c12 8 : 5, 15.
c8 12 : 9, 15.
C8_4: 8, 9, 13, 15.
c8 4 : 5, 8, 13.
c8 4 parity : 8.
d: 13, 25.
dat : 16, 19.
datahash : 19, 20, 22, 23.

16 DISK I/O PHASE2PRUNE §26

dest off : 14.
destat : 14, 16.
dst1 : 15, 16.
eb : 9, 15.
ebp : 5, 9, 15, 16.
ebp1 : 16.
edge coordinate : 5, 9, 11.
edgeud remap : 4, 9, 11, 16.
end : 25.
endl : 13, 20, 22, 26.
eperm move : 15.
epsymm compress : 9, 15.
epsymm expand : 9, 15.
et : 5, 9, 15.
etp : 5, 9, 15, 16.
etp1 : 16.
e8 4 : 9, 15.
f : 20, 21.
FACT4: 5, 8, 9, 13, 15.
FACT8: 2, 4, 10, 11, 14.
fclose : 20, 21.
ffs : 25.
file checksum : 17, 18, 20, 21, 22, 23.
filename : 17, 18, 20, 21.
flush : 13.
fopen : 20, 21.
fread : 20.
fwrite : 21.
gen table : 12, 13, 23.
i: 26.
identity cube : 26.
identity pc : 11, 25.
in Kociemba group : 14, 26.
init : 2, 3, 26.
initialized : 3.
j: 26.
KOCSYMM: 4, 9.
kocsymm: 1, 4, 9, 14, 15, 26.
lookd : 26.
lookup : 2, 11, 25, 26.
lookup type: 4.
lrand48 : 26.
m: 4, 8, 9, 14.
main : 26.
malloc : 10.
mask : 25.
maxlen : 24, 25.
mem : 6, 7, 10, 11, 13, 15, 16, 20, 21, 22, 23.
memset : 13.
memsize : 6, 7, 10, 13, 20, 21, 22, 23.
minbits : 4, 8, 13, 14.
minc : 8.

minm : 8.
move : 14, 25.
movepc : 26.
moveseq: 24, 25, 26.
mv : 14, 15, 25, 26.
newval : 13, 16.
next cs : 25.
NMOVES: 14.
ntogo : 25.
oc : 8, 13, 14.
off : 11, 14, 15.
p: 20.
parity : 4, 8.
pc : 2, 5, 8, 9, 11, 13, 14, 24, 25.
pc2 : 8, 9, 14, 25.
pc3 : 14.
pc4 : 14.
permcube: 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 24, 25.
phase2prune: 2, 3, 7, 11, 13, 18, 20, 21, 22,

25, 26.
PHASE2PRUNE_H: 1.
push back : 25.
QUARTER: 13.
r: 11, 25.
random move : 26.
read table : 12, 20, 23.
remap : 11.
remap into : 8, 9.
reverse : 25.
s: 26.
seed : 19, 20.
seek : 13, 15.
seen : 13, 16.
seq : 24.
set edge perm : 9.
set perm : 8.
siz : 20.
size : 26.
solve : 24, 25, 26.
srand48 : 26.
std: 3, 26.
suppress writing : 2, 3, 23.
sz : 19.
s4mul : 16.
tc : 8.
time : 26.
tmp : 26.
togo : 20, 24, 25.
t1 : 15, 16.
t2 : 15, 16.
val : 16.
write table : 12, 21, 23.

PHASE2PRUNE NAMES OF THE SECTIONS 17

〈Data declarations 6, 17 〉 Used in section 2.

〈Data instantiations 4, 7, 18 〉 Used in section 3.

〈Handle one position 16 〉 Used in section 15.

〈 Initialize the instance 8, 9, 10, 23 〉 Used in section 3.

〈 Iterate over all moves 14 〉 Used in section 13.

〈Method bodies 11, 13, 20, 21, 22, 25 〉 Used in section 3.

〈Method declarations 12, 24 〉 Used in section 2.

〈Scan one row 15 〉 Used in section 14.

〈Utility methods 5, 19 〉 Used in section 3.

〈 phase2prune.cpp 3 〉
〈 phase2prune.h 1, 2 〉
〈 phase2prune_test.cpp 26 〉

PHASE2PRUNE

Section Page
Introduction . 1 1
Looking up a position . 11 7
Generating the pruning table . 12 8
Disk I/O . 17 11

	Introduction
	Looking up a position
	Generating the pruning table
	Disk I/O
	Names of the sections
	Data declarations
	Data instantiations
	Handle one position
	Initialize the instance
	Iterate over all moves
	Method bodies
	Method declarations
	Scan one row
	Utility methods
	phase2prune.cpp
	phase2prune.h
	phase2prune_test.cpp

