
§1 KOCSYMM INTRODUCTION 1

1. Introduction. The cubepos package provides a rich and fast representation of the Rubik’s cube,
with a full set of operations including moves, multiplication, and inversion. (Please read that document if
you haven’t already, because kocsymm builds on that.) While cubepos is rich and efficient, sometimes it
is not exactly what you need. For instance, if you wanted to use the cubepos structure to create an index
into an array based on the 12! possible permutations of the edges, you would have to do a fair amount of
work. Other representations of the cube provide faster indexing operations. The two classes defined here,
kocsymm and permcube, provide an alternative representation of the cube that is particularly suitable
for implementations of Herbert Kociemba’s two-phase algorithm.
〈 kocsymm.h 1 〉 ≡
#ifndef KOCSYMM_H

#define KOCSYMM_H

#include "cubepos.h"

See also sections 2, 4, 29, 30, and 55.

2 INTRODUCTION KOCSYMM §2

2. The two-phase algorithm is based on the subgroup generated by {U, F2, R2, D, B2, L2}. We refer to
this group as H. The idea behind the two-phase algorithm is to find a way to take an arbitrary cube position
and find a sequence to bring it into the subgroup, and then solve it within the subgroup using moves within
the subgroup. The first phase is just finding a path within the Schreier coset graph of the group H to the
trivial coset; the second part is solving within that coset.

The orientation conventions in cubepos were carefully chosen so that none of the moves that generate H
change the orientation of any of the cubies in the solved position; thus, all positions in H, when represented
by cubepos, have the same orientation (both edge and corners) as the solved position. Furthermore, none
of the moves that generate H move any of the cubies in the middle slice out of the middle slice; thus, this
is also preserved for all positions in H.

It turns out (but we will not prove it here) that every position that meets these conditions is in the
subgroup H. Each of the 8! permutations of the corners is reachable, in combination with each of the 8!
permutations of the top and bottom edges, and also in combination with all 4! permutations of the middle
edges subject that the overall parity of the corners and edges match. Thus, the size of H is 8! · 8! · 4!/2 or
19,508,428,800.

Given a representative position p, the right coset of H corresponding to p is just Hp (where the multipli-
cation operation of the group is extended to sets in the usual way). Since all the positions in H have the
same, solved, orientation, this means all the positions in any particular coset of H (identified by p) share the
same orientation. Similarly, the set of cubie slots that contain middle edge cubies is also the same for every
element of a particular coset of H. Indeed, these three things, the edge orientation, the corner orientation,
and the cubie slots containing the middle edge cubies, fully define a coset of H.

The kocsymm class contains three integer coordinates that each represent one of these characteristics, and
thus, an entire coset of H. The move operation on a kocsymm instance is just an edge on the coset graph
of H induced by the set of move generators we have chosen. By using simple integer coordinates, we allow for
very fast operations of move and indexing. The csymm coordinate represents the corner orientation and has
37 possible values; the eosymm coordinate represents the edge orientation and has 211 possible values; the
epsymm coordinate has

(
12
4

)
possible values and represents the slots that contain the middle four slice cubies.

Where order matters, we will always give the coordinates in this order. (They are ordered from largest range
to smallest range.) We define a type that is large enough for these ranges (and also 8!, incidentally) yet
still storage efficient, and use this type for most of our tables. For the trivial coset, the value of all three
coordinates is chosen to be zero.
〈 kocsymm.h 1 〉 +≡

const int CORNERSYMM = 2187;
const int EDGEOSYMM = 2048;
const int EDGEPERM = 495;
〈Constants for kocsymm and permcube 18 〉
typedef unsigned short lookup type;
class kocsymm {
public:

kocsymm()
: csymm (0), eosymm (0), epsymm (0) { }
kocsymm(int c, int eo , int ep)
: csymm (c), eosymm (eo), epsymm (ep) { }
〈Methods for kocsymm 3 〉
〈Static data declarations for kocsymm 6 〉
lookup type csymm , eosymm , epsymm ;
};

§3 KOCSYMM INTRODUCTION 3

3. We have the same static initialization issue with kocsymm that we did with cubepos, so we declare a
special initializer that forces an initialization routine to be called, as well as that initialization routine itself.
〈Methods for kocsymm 3 〉 ≡

kocsymm(int)
: csymm (0), eosymm (0), epsymm (0) {

init ();
}
static void init ();

See also sections 5, 9, 10, 24, 26, and 28.

This code is used in section 2.

4. To force initialization in the proper order for all users of this include file, we declare a file-static instance
here. Since we need an identity anyway, we go ahead and make this the identity object for this class (although
there will be multiple instances, they will all have the same value).
〈 kocsymm.h 1 〉 +≡

static kocsymm identity kc(1);

5. We use simple ordering, equality, and inequality methods for this simple value class.
〈Methods for kocsymm 3 〉 +≡

inline bool operator < (const kocsymm &kc) const
{

if (csymm 6= kc .csymm) return csymm < kc .csymm ;
if (eosymm 6= kc .eosymm) return eosymm < kc .eosymm ;
return epsymm < kc .epsymm ;
}
inline bool operator≡(const kocsymm &kc) const
{

return kc .csymm ≡ csymm ∧ kc .eosymm ≡ eosymm ∧ kc .epsymm ≡ epsymm ;
}
inline bool operator 6=(const kocsymm &kc) const
{

return kc .csymm 6= csymm ∨ kc .eosymm 6= eosymm ∨ kc .epsymm 6= epsymm ;
}

6. We want to implement a fast move operation, and the range of each of the coordinates is fairly small,
so we use static tables to implement move . We choose to use the coordinate value as the first index, as many
of our searches will be depth-first search, and this will give us some cache locality we would otherwise lose
out on.
〈Static data declarations for kocsymm 6 〉 ≡

static lookup type cornermove [CORNERSYMM][NMOVES];
static lookup type edgeomove [EDGEOSYMM][NMOVES];
static lookup type edgepmove [EDGEPERM][NMOVES];

See also sections 11 and 20.

This code is used in section 2.

4 INTRODUCTION KOCSYMM §7

7. These arrays need to be allocated, so it is time to introduce our cpp source.
〈 kocsymm.cpp 7 〉 ≡
#include "kocsymm.h"

#include <iostream>

using namespace std;
〈Static data instantiations 8 〉
〈Utility methods 13 〉
〈Method bodies 15 〉
void kocsymm :: init ()
{

static int initialized = 0;
if (initialized) return;
initialized = 1;
〈 Initialize kocsymm 14 〉
permcube :: init ();
}

8. We need to instantiate these arrays.
〈Static data instantiations 8 〉 ≡

lookup type kocsymm ::cornermove [CORNERSYMM][NMOVES];
lookup type kocsymm ::edgeomove [EDGEOSYMM][NMOVES];
lookup type kocsymm ::edgepmove [EDGEPERM][NMOVES];

See also sections 12, 21, 32, 37, 40, and 44.

This code is used in section 7.

9. With these arrays, the move operation is very simple.
〈Methods for kocsymm 3 〉 +≡

void move (int mv)
{

csymm = cornermove [csymm][mv];
eosymm = edgeomove [eosymm][mv];
epsymm = edgepmove [epsymm][mv];
}

10. The easiest way to initialize these arrays are to introduce conversion routines that allow us to extract
the coordinates from a cubepos, and allow us to set up a cubepos with those characteristics. We can use
a constructor to go from cubepos to kocsymm, but we use a set coset to modify an existing cubepos so
it is in the coset represented by the current kocsymm.
〈Methods for kocsymm 3 〉 +≡

kocsymm(const cubepos &cp);
void set coset (cubepos &cp);

§11 KOCSYMM NUMBERING THE COORDINATES 5

11. Numbering the coordinates. For the corner symmetries, the easiest numbering representation
is just as base-3 number, where the least significant digit comes from corner 0, and so on, and with the
value from corner 7 ignored (since it must the the negative sum of the other corners). Similarly, the edge
symmetries are most easily handled as a base-2 number from the first 11 edges.

The slots holding middle edge cubies is just a bit more complicated. We insist that the zero value be
the solved position. First we build a bitmask that always has four bits set; the least significant four bits
represent edge slots 4 to 7 (the middle slots), the next four bits represent edge slots 8 to 11, and the final
four bits represent edge slots 0 to 3. We sort all possible 12-bit values in increasing numerical value, and use
the index into this array to determine the value for epsymm .

To support this, we need two arrays, one to compress the bits from 12 bits down to an epsymm value, and
one to expand the epsymm back into a bitmask. The rotations are done in the arrays, so the values you will
obtain from the array and/or pass into the array all have the bits in normal, 0 though 12, order.
〈Static data declarations for kocsymm 6 〉 +≡

static lookup type epsymm compress [1� 12];
static lookup type epsymm expand [EDGEOSYMM];

12. The usual instantiation.
〈Static data instantiations 8 〉 +≡

lookup type kocsymm ::epsymm compress [1� 12];
lookup type kocsymm ::epsymm expand [EDGEOSYMM];

13. To help us fill these arrays, we need a generic bit counting function. This is not used in any
performance-critical code, so we can be a bit slow.
〈Utility methods 13 〉 ≡

static int bc(int v)
{

int r = 0;
while (v) {

v &= v − 1;
r++;

}
return r;
}

See also section 35.

This code is used in section 7.

14. Filling these two arrays is straightforward. We also fill the entry without the high bit set, just in case
we decide to only look at 11 cubies rather than 12.
〈 Initialize kocsymm 14 〉 ≡

int c = 0;
for (int i = 0; i < 1� 12; i++)

if (bc(i) ≡ 4) {
int rotval = ((i� 4) + (i� 8)) & #fff;
epsymm compress [rotval] = c;
epsymm compress [rotval & #7ff] = c;
epsymm expand [c] = rotval ;
c++;

}
See also sections 17, 22, and 23.

This code is used in section 7.

6 NUMBERING THE COORDINATES KOCSYMM §15

15. With that done, we are now ready to obtain a kocsymm object from a cubepos. This routine does
not have to be dramatically fast. We use a little trick; of the edge indices 0 through 11, only those in the
middle edge, with values 4 though 7, have the bit with value 4 set. Since the cubie numbering for edges has
the orientation in the low bit, this means we actually need to use the bit with value 8.
〈Method bodies 15 〉 ≡

kocsymm ::kocsymm(const cubepos &cp)
{

int c = 0, eo = 0, ep = 0;
for (int i = 6; i ≥ 0; i−−) c = 3 ∗ c + cubepos ::corner ori (cp .c[i]);
for (int i = 10; i ≥ 0; i−−) {

eo = 2 ∗ eo + cubepos ::edge ori (cp .e[i]);
ep = 2 ∗ ep + (cp .e[i] & 8);

}
csymm = c;
eosymm = eo ;
epsymm = epsymm compress [ep � 3];
}

See also sections 16, 25, 27, 33, 46, 48, 49, 50, 51, and 52.

This code is used in section 7.

§16 KOCSYMM NUMBERING THE COORDINATES 7

16. Setting a cubepos to be in the coset is also straightforward. We completely destroy the pre-existing
permutation in the cubepos as we do this. This routine is not particularly fast. The only complexity in
this routine is recovering the orientation of the last corner and edge.
〈Method bodies 15 〉 +≡

void kocsymm ::set coset (cubepos &cp)
{

int c = csymm , eo = eosymm , ep = epsymm expand [epsymm];
int s = 0;
for (int i = 0; i < 7; i++) {

int ori = c % 3;
cp .c[i] = cubepos ::corner val (i, ori);
s += ori ;
c = c/3;

}
cp .c[7] = cubepos ::corner val (7, (8 ∗ 3− s) % 3);
s = 0;
int nextmid = 4;
int nextud = 0;
for (int i = 0; i < 12; i++) {

if (i ≡ 11) eo = s;
int ori = eo & 1;
if (ep & 1) cp .e[i] = cubepos ::edge val (nextmid ++, ori);
else {

cp .e[i] = cubepos ::edge val (nextud ++, ori);
if (nextud ≡ 4) nextud = 8;

}
s ⊕= ori ;
eo �= 1;
ep �= 1;

}
}

17. With these two routines in place, we can fill out our move arrays. Note that we have to use movepc ,
since the coset space (which is not a group) doesn’t know where the cubies are, only what the orientations
are in specific slots (and a bit more information about the middle cubies).
〈 Initialize kocsymm 14 〉 +≡

cubepos cp , cp2 ;
for (int i = 0; i < CORNERSYMM; i++) {

kocsymm kc(i, i % EDGEOSYMM, i % EDGEPERM);
kc .set coset (cp);
for (int mv = 0; mv < NMOVES; mv ++) {

cp2 = cp ;
cp2 .movepc(mv);
kocsymm kc2 (cp2);
cornermove [i][mv] = kc2 .csymm ;
if (i < EDGEOSYMM) edgeomove [i][mv] = kc2 .eosymm ;
if (i < EDGEPERM) edgepmove [i][mv] = kc2 .epsymm ;

}
}

8 SYMMETRY KOCSYMM §18

18. Symmetry. Just like cubepos, kocsymm (and later, permcube) have symmetry. Since these
treat the middle layer cubies differently than the others, some symmetry is broken; we only have 16-way
rather than 48-way symmmetry. The symmetry of kocsymm and permcube are specifically the first 16
symmetries of cubepos, which was carefully constructed so the middle cubies remain middle cubies.

Calculating corner orientation remapping and middle edge slot remapping is straightforward, but edge
orientation remapping is not so simple. Our edge orientation convention as defined by cubepos treats the
front and back faces differently from the left and right faces, so we cannot simply shuffle the bits around.
However, the first 8 symmetries of cubepos preserve all three axes, so we can just shuffle bits for the first
eight symmetries. For the other eight symmetries, we can use the epsymm information to determine which
cubies are out of the middle slice both before and after rotation, and exclusive-or that information to correct
for this rotation.

In reality, the only thing we use the rotation for is to canonicalize a kocsymm, so we do not store full
remapping information for the corner symmetry, only enough information for canonicalization. As part of
this canonicalization we also squeeze and unsqueeze the corner coordinate (to eliminate gaps created by the
canonicalization). We define CORNERRSYMM to represent the count of canonical corner permutations, which
we precompute and put here, and then check later in the initialization routine.
〈Constants for kocsymm and permcube 18 〉 ≡

const int KOCSYMM = 16;
const int CORNERRSYMM = 168;

See also section 19.

This code is used in section 2.

19. We need a set of arrays to manage the canonicalization. We need remapping arrays for the edge
orientation and permutation. We need an array for the edge permutation that says what bits to flip (but
we only need one entry, used only if we are remapping to 8 through 15). For corner remapping, we have
two cases. The most common case is there is a unique remapping that minimizes the corner coordinate, in
which case canonicalization is quick and easy. The other case is when there are multiple distinct remappings
that all generate the same minimal corner coordinate. In this case, we store a bitmask indicating which
remappings to consider, and we must iterate through them all.

From the corner coordinate, we compute three data items: minbits , a set of 16 bits, one per symmetry,
that generates the minimum corner coordinate value; csymm , the corner symm we get as a result (after
compaction), and mimap , the minimum mapping that generates that value.
〈Constants for kocsymm and permcube 18 〉 +≡

struct corner mapinfo {
unsigned short minbits ;
unsigned char csymm , minmap ;
};

20. We need the following arrays to support canonicalization.
〈Static data declarations for kocsymm 6 〉 +≡

static lookup type cornersymm expand [CORNERRSYMM];
static corner mapinfo cornersymm [CORNERSYMM];
static lookup type edgeomap [EDGEOSYMM][KOCSYMM];
static lookup type edgepmap [EDGEPERM][KOCSYMM];
static lookup type edgepxor [EDGEPERM][2];

§21 KOCSYMM SYMMETRY 9

21. We need to instantiate those arrays.
〈Static data instantiations 8 〉 +≡

lookup type kocsymm ::cornersymm expand [CORNERRSYMM];
corner mapinfo kocsymm ::cornersymm [CORNERSYMM];
lookup type kocsymm ::edgeomap [EDGEOSYMM][KOCSYMM];
lookup type kocsymm ::edgepmap [EDGEPERM][KOCSYMM];
lookup type kocsymm ::edgepxor [EDGEPERM][2];

22. Our strategy for initializing these is very similar to what we did for moves: use the cubepos class
and the two conversion routines to do the heavy lifting. We start by figuring out the corner compaction
values.
〈 Initialize kocsymm 14 〉 +≡

c = 0;
for (int cs = 0; cs < CORNERSYMM; cs ++) {

int minval = cs ;
int lowm = 0;
int lowbits = 1;
kocsymm kc(cs , 0, 0);
for (int m = 1; m < KOCSYMM; m++) {

kc .set coset (cp);
cp .remap into(m, cp2);
kocsymm kc2 (cp2);
if (kc2 .csymm < minval) {

minval = kc2 .csymm ;
lowbits = 1� m;
lowm = m;

}
else if (kc2 .csymm ≡ minval) {

lowbits |= 1� m;
}

}
if (minval ≡ cs) {

cornersymm expand [c] = minval ;
cornersymm [cs].csymm = c++;

}
cornersymm [cs].minbits = lowbits ;
cornersymm [cs].minmap = lowm ;
cornersymm [cs].csymm = cornersymm [minval].csymm ;
}
if (c 6= CORNERRSYMM)

error ("! bad cornersym result") ;

10 SYMMETRY KOCSYMM §23

23. Now we compute the edge permutation remapping, the xor values for the edge permutation, and the
edge orientation remapping. Note that mapping 8 is self-inverse, so we reverse the result and input so we
can apply the correction to eosymm before the array index.
〈 Initialize kocsymm 14 〉 +≡

for (int ep = 0; ep < EDGEPERM; ep ++) {
kocsymm kc(0, 0, ep);
for (int m = 0; m < KOCSYMM; m++) {

kc .set coset (cp);
cp .remap into(m, cp2);
kocsymm kc2 (cp2);
edgepmap [ep][m] = kc2 .epsymm ;
if (m ≡ 8) {

edgepxor [kc2 .epsymm][0] = 0;
edgepxor [kc2 .epsymm][1] = kc2 .eosymm ;

}
}
}
for (int eo = 0; eo < EDGEOSYMM; eo ++) {

kocsymm kc(0, eo , 0);
for (int m = 0; m < KOCSYMM; m++) {

kc .set coset (cp);
cp .remap into(m, cp2);
kocsymm kc2 (cp2);
edgeomap [eo][m] = kc2 .eosymm ;

}
}

24. With these arrays, we are ready to canonicalize.
〈Methods for kocsymm 3 〉 +≡

void canon into(kocsymm &kc) const;

§25 KOCSYMM SYMMETRY 11

25. The implementation first checks if we can do it quickly, and if not, iterates.
〈Method bodies 15 〉 +≡

void kocsymm ::canon into(kocsymm &kc) const
{

corner mapinfo &cm = cornersymm [csymm];
kc .csymm = cornersymm expand [cm .csymm];
kc .eosymm = edgeomap [edgepxor [epsymm][cm .minmap � 3]⊕ eosymm][cm .minmap];
kc .epsymm = edgepmap [epsymm][cm .minmap];
for (int m = cm .minmap + 1; cm .minbits � m; m++)

if ((cm .minbits � m) & 1) {
int neo = edgeomap [edgepxor [epsymm][m� 3]⊕ eosymm][m];
if (neo > kc .eosymm) continue;
int nep = edgepmap [epsymm][m];
if (neo < kc .eosymm ∨ nep < kc .epsymm) {

kc .eosymm = neo ;
kc .epsymm = nep ;
}

}
}

26. We need a method that returns how much symmetry this kocsymm has.
〈Methods for kocsymm 3 〉 +≡

int calc symm () const;

27. The implementation is just a slight rewriting of canon into .
〈Method bodies 15 〉 +≡

int kocsymm ::calc symm () const
{

int r = 1;
corner mapinfo &cm = cornersymm [csymm];
int teosymm = edgeomap [edgepxor [epsymm][cm .minmap � 3]⊕ eosymm][cm .minmap];
int tepsymm = edgepmap [epsymm][cm .minmap];
for (int m = cm .minmap + 1; cm .minbits � m; m++)

if (((cm .minbits � m) & 1) ∧ edgeomap [edgepxor [epsymm][m � 3] ⊕ eosymm][m] ≡
teosymm ∧ edgepmap [epsymm][m] ≡ tepsymm) r++;

return r;
}

28. We need a method that tells us if a move is in the Kociemba group or not. We can just determine if
a transition from the default state of epsymm is zero or not.
〈Methods for kocsymm 3 〉 +≡

static inline int in Kociemba group(int mv)
{

return edgepmove [0][mv] ≡ 0;
}

12 STORING PERMUTATIONS WITH PERMCUBE KOCSYMM §29

29. Storing permutations with permcube. With kocsymm working, we can turn our attention to
storing those bits of the state that are not stored in it—the permutation information. While kocsymm does
store a limited amount of permutation information (what slots the middle four cubies are in), permcube
stores all of the permutation information. We design permcube to enable fast moves and indexing of the
resulting state, with the tradeoff that it is not as rich as cubepos; for instance, we do not define inversion.

We store edge permutation information and corner permutation information separately. The kocsymm
class already defines the ability to maintain the position of four cubies at a time (as a group); we exploit
that to maintain the slots for the upper edges and the lower edges as well. We store this information in the
three fields et , em , and eb (edge top, edge middle, and edge bottom). For all three groups of four cubies,
we store in addition the order that the cubies occur within that group of four; we store this in the fields etp ,
emp , and ebp . The information in et , em , and eb is redundant; if we know the slots holding either two sets,
we also know the sets holding the other. Nonetheless, dividing the 12! or 479,001,600 possible states into
six smaller chunks, three of 495 values and 3 of 24 values, makes our transition tables much smaller, and we
share the same transition tables for the top, middle, and edge.

For the corners, we use a similar approach: we store which four of the eight slots contain top corner cubies
in c8 4 , and separately, we store the order of the top cubies in ctp , and the order of the bottom cubies in
cbp .
〈 kocsymm.h 1 〉 +≡

const int FACT4 = 24;
const int C8_4 = 70;
class permcube {
public:

permcube();
〈Methods for permcube 42 〉
static void init ();
〈Static data declarations for permcube 31 〉
unsigned short et , em , eb ;
unsigned char etp , emp , ebp ;
unsigned char c8 4 , ctp , cbp ;
};

30. We allocate a file-scope identity instance statically. We don’t actually need this one to work around
the static initialization fiasco, but it’s always good to have a cheap identity object.
〈 kocsymm.h 1 〉 +≡

static permcube identity pc ;

31. To manage all the permutations of four elements, we need to build the multiplication and inversion
table for this group, called S4. We also declare two arrays, one which takes an eight-byte value, two bits per
element, that gives the permutation (the identity element would be 0b11100100 or #e4; the least significant
bits represent the first element) and gives the corresponding index for that permutation, and one that does
the inverse of that.
〈Static data declarations for permcube 31 〉 ≡

static unsigned char s4inv [FACT4];
static unsigned char s4mul [FACT4][FACT4];
static unsigned char s4compress [256];
static unsigned char s4expand [FACT4];

See also sections 36, 39, and 43.

This code is used in section 29.

§32 KOCSYMM STORING PERMUTATIONS WITH PERMCUBE 13

32. Next, we declare these.
〈Static data instantiations 8 〉 +≡

unsigned char permcube ::s4inv [FACT4];
unsigned char permcube ::s4mul [FACT4][FACT4];
unsigned char permcube ::s4compress [256];
unsigned char permcube ::s4expand [FACT4];

33. We need an initialization routine for permcube. This is called automatically by kocsymm :: init ()
so we don’t need a static initialization hack.
〈Method bodies 15 〉 +≡

void permcube :: init ()
{
〈 Initialize permcube 34 〉;
}

14 STORING PERMUTATIONS WITH PERMCUBE KOCSYMM §34

34. Permutation numbering. Normally we would number S4 is lexicographical order. But for various
reasons we need to compute the parity of the permutation quickly, so we use bit 0 of the indexing for that
purpose; this avoids a table lookup.

We have another requirement, however, introduced by hcoset . Let i(p) be the integer index assigned to
permutation p, p(i) to be the permutation associated with integer index i, and a · b to be the multiplication
of the permutation a by the permutation b, and j ⊕ k to be the bit-wise exclusive-or of j and k. We want
p(i(a)⊕ 1) · b = p(i(a · b)⊕ 1). Essentially, we want to group our permutations into pairs, the first even and
the second odd, such that right multiplication preserves the pairs. We need this so we can collect certain
pairs of permutations into a 24-bit word, perform an operation on them, and be assured that the result will
still fall into a single 24-bit word, rather than different halves of two different 24-bit words.

It turns out both of these are easy to arrange. We generate the permutations in lexicographical order, but
use the inverse permutation rather than the forward permutation, and store the parity. For the c loop below,
there are only two values left for c and d, so the two permutations generated in sequence will have these
values swapped, which is precisely what we need. The parity is just the exclusive or of the least significant
two bits of the lexicographical order index.
〈 Initialize permcube 34 〉 ≡

int cc = 0;
for (int a = 0; a < 4; a++)

for (int b = 0; b < 4; b++)
if (a 6= b)

for (int c = 0; c < 4; c++)
if (a 6= c ∧ b 6= c) {

int d = 0 + 1 + 2 + 3− a− b− c;
int coor = cc ⊕ ((cc � 1) & 1);
int expanded = (1� (2 ∗ b)) + (2� (2 ∗ c)) + (3� (2 ∗ d));
s4compress [expanded] = coor ;
s4expand [coor] = expanded ;
cc ++;

}
for (int i = 0; i < FACT4; i++)

for (int j = 0; j < FACT4; j++) {
int k = s4compress [muls4 (s4expand [i], s4expand [j])];
s4mul [j][i] = k;
if (k ≡ 0) s4inv [i] = j;

}
See also sections 38, 41, 53, and 54.

This code is used in section 33.

35. We still need to write the muls4 utility routine. This is simple enough that we simply extract the
relevant bits inline.
〈Utility methods 13 〉 +≡

int muls4 (int a, int b)
{

int r = 3 & (b� (2 ∗ (a & 3)));
r += (3 & (b� (2 ∗ ((a� 2) & 3))))� 2;
r += (3 & (b� (2 ∗ ((a� 4) & 3))))� 4;
r += (3 & (b� (2 ∗ ((a� 6) & 3))))� 6;
return r;
}

§36 KOCSYMM STORING PERMUTATIONS WITH PERMCUBE 15

36. For the edge groups of four, we use the same arrays as kocsymm; these have already been defined
and initialized. For the corner groups, we need to write compaction and move arrays.
〈Static data declarations for permcube 31 〉 +≡

static unsigned char c8 4 compact [256];
static unsigned char c8 4 expand [C8_4];
static unsigned char c8 4 parity [C8_4];

37. Next, we declare these.
〈Static data instantiations 8 〉 +≡

unsigned char permcube ::c8 4 compact [256];
unsigned char permcube ::c8 4 expand [C8_4];
unsigned char permcube ::c8 4 parity [C8_4];

38. To initialize these arrays, we again need to track the parity. The pattern is more complex for the
eight-bit words that have four bits set, so we simply count inversions.
〈 Initialize permcube 34 〉 +≡

int c = 0;
for (int i = 0; i < 256; i++)

if (bc(i) ≡ 4) {
int parity = 0;
for (int j = 0; j < 8; j++)

if (1 & (i� j))
for (int k = 0; k < j; k++)

if (0 ≡ (1 & (i� k))) parity ++;
c8 4 parity [c] = parity & 1;
c8 4 compact [i] = c;
c8 4 expand [c] = i;
c++;

}

39. The usual use for permcube is to handle operations within the Kociemba group H, where the middle
edge positions are always in the middle edge. Thus, the group information for the top edges is just

(
8
4

)
rather

than
(
12
4

)
, so we need an array to compress the

(
12
4

)
index (which ranges from 0 to 494) to a

(
8
4

)
index.

〈Static data declarations for permcube 31 〉 +≡
static unsigned char c12 8 [EDGEPERM];
static lookup type c8 12 [C8_4];

40. Next, we declare these.
〈Static data instantiations 8 〉 +≡

unsigned char permcube ::c12 8 [EDGEPERM];
lookup type permcube ::c8 12 [C8_4];

16 STORING PERMUTATIONS WITH PERMCUBE KOCSYMM §41

41. Initializing this is straightforward; we expand the bits, remove the middle four, and compress them
again.
〈 Initialize permcube 34 〉 +≡

for (int i = 0; i < EDGEPERM; i++) {
int expbits = kocsymm ::epsymm expand [i];
if (expbits & #0f0) c12 8 [i] = 255;
else {

int ii = c8 4 compact [(expbits � 4) + (expbits & 15)];
c12 8 [i] = ii ;
c8 12 [ii] = i;

}
}

42. We need equality and ordering routines. These are a bit long because of the count of fields. Note that
we cannot use memcmp reliably because there might be indeterminate padding.
〈Methods for permcube 42 〉 ≡

inline bool operator < (const permcube &pc) const
{

if (et 6= pc .et) return et < pc .et ;
if (em 6= pc .em) return em < pc .em ;
if (eb 6= pc .eb) return eb < pc .eb ;
if (etp 6= pc .etp) return etp < pc .etp ;
if (emp 6= pc .emp) return emp < pc .emp ;
if (ebp 6= pc .ebp) return ebp < pc .ebp ;
if (c8 4 6= pc .c8 4) return c8 4 < pc .c8 4 ;
if (ctp 6= pc .ctp) return ctp < pc .ctp ;
return cbp < pc .cbp ;
}
inline bool operator≡(const permcube &pc) const
{

return et ≡ pc .et ∧ em ≡ pc .em ∧ eb ≡ pc .eb ∧ etp ≡ pc .etp ∧ emp ≡ pc .emp ∧ ebp ≡ pc .ebp ∧ c8 4 ≡
pc .c8 4 ∧ ctp ≡ pc .ctp ∧ cbp ≡ pc .cbp ;

}
inline bool operator 6=(const permcube &pc) const
{

return et 6= pc .et ∨ em 6= pc .em ∨ eb 6= pc .eb ∨ etp 6= pc .etp ∨ emp 6= pc .emp ∨ ebp 6= pc .ebp ∨ c8 4 6=
pc .c8 4 ∨ ctp 6= pc .ctp ∨ cbp 6= pc .cbp ;

}
See also sections 45 and 47.

This code is used in section 29.

§43 KOCSYMM STORING PERMUTATIONS WITH PERMCUBE 17

43. To write our move method, we need arrays that give the action of moves on our various fields. For
the edge group movement, the kocsymm class already provides this information, but it does not provide
information on how the permutation of the constituent cubies changes. We need a move array that provides
both pieces of information. The new coordinate requires nine bits to represent, and the S4 index requires
five bits to represent. We could use a three byte struct that would blow up to four bytes total for alignment,
or we can use bit fields. We prefer bit fields; we code our own to make sure they fit in a short. We also need
an array to manage the corner moves, with the same basic structure. We use file statics for these; no need
to expose them.
〈Static data declarations for permcube 31 〉 +≡

static unsigned short eperm move [EDGEPERM][NMOVES];
static int cperm move [C8_4][NMOVES];

44. We instantiate those arrays here.
〈Static data instantiations 8 〉 +≡

unsigned short permcube ::eperm move [EDGEPERM][NMOVES];
int permcube ::cperm move [C8_4][NMOVES];

45. The move routine is declared here.
〈Methods for permcube 42 〉 +≡

void move (int mv);

46. The move routine is pretty simple; for each group field, we calculate its new value, and extract the
appropriate S4 effect on the permutation of its elements from the low order five bits.
〈Method bodies 15 〉 +≡

void permcube ::move (int mv)
{

#ifdef SAFETY_CHECKS

if ((kocsymm ::epsymm expand [et] | kocsymm ::epsymm expand [em] |
kocsymm ::epsymm expand [eb]) 6= #fff)

error ("! bad pc in move") ;
#endif

int t = eperm move [et][mv];
et = t� 5;
etp = s4mul [etp][t & 31];
t = eperm move [em][mv];
em = t� 5;
emp = s4mul [emp][t & 31];
t = eperm move [eb][mv];
eb = t� 5;
ebp = s4mul [ebp][t & 31];
t = cperm move [c8 4][mv];
c8 4 = t� 10;
ctp = s4mul [ctp][(t� 5) & 31];
cbp = s4mul [cbp][t & 31];
}

18 STORING PERMUTATIONS WITH PERMCUBE KOCSYMM §47

47. In order to fill in these arrays, it’s easiest to have a pair of routines that gets a permutation from a
cubepos, and another that sets a permutation from a cubepos. Unlike kocsymm ::set coset , the set perm
routine will preserve the orientation, only affecting the cubie permutations. So if you call both set coset and
set perm , make sure to call set coset first and set perm second.

We also provide routines to get only the corner information and only the edge information because
sometimes that’s all we need, and these routines can make a major difference in performance. We also provide
a routine that gets just the up/down permutation and another that gets just the middle permutation for
those specific cases where the position is guaranteed to be already in the Kociemba group. Similar routines
exist for setting just the edge information and setting just the corner information.
〈Methods for permcube 42 〉 +≡

void init edge from cp(const cubepos &cp);
void init corner from cp(const cubepos &cp);
permcube(const cubepos &cp);
void set edge perm (cubepos &cp) const;
void set corner perm (cubepos &cp) const;
void set perm (cubepos &cp) const;

48. The constructor from a basic cube simply iterates through the cubies, keeping track of which groups
each cubie belongs to and the order that the cubies are seen in. We iterate backwards so the least significant
cubie ends up in the low order bits. Edges first.
〈Method bodies 15 〉 +≡

void permcube :: init edge from cp(const cubepos &cp)
{

et = em = eb = 0;
etp = emp = ebp = 0;
for (int i = 11; i ≥ 0; i−−) {

int perm = cubepos ::edge perm (cp .e[i]);
if (perm & 4) { /∗ middle layer ∗/

em |= 1� i;
emp = 4 ∗ emp + (perm & 3);

}
else if (perm & 8) { /∗ bottom layer ∗/

eb |= 1� i;
ebp = 4 ∗ ebp + (perm & 3);

}
else {

et |= 1� i;
etp = 4 ∗ etp + (perm & 3);

}
}
et = kocsymm ::epsymm compress [et];
em = kocsymm ::epsymm compress [em];
eb = kocsymm ::epsymm compress [eb];
etp = s4compress [etp];
emp = s4compress [emp];
ebp = s4compress [ebp];
}

§49 KOCSYMM STORING PERMUTATIONS WITH PERMCUBE 19

49. Corners next, plus the routine that puts the two together.
〈Method bodies 15 〉 +≡

void permcube :: init corner from cp(const cubepos &cp)
{

c8 4 = 0;
ctp = cbp = 0;
for (int i = 7; i ≥ 0; i−−) {

int perm = cubepos ::corner perm (cp .c[i]);
if (perm & 4) { /∗ bottom layer ∗/

cbp = 4 ∗ cbp + (perm & 3);
}
else {

c8 4 |= 1� i;
ctp = 4 ∗ ctp + (perm & 3);

}
}
c8 4 = c8 4 compact [c8 4];
ctp = s4compress [ctp];
cbp = s4compress [cbp];
}
permcube ::permcube(const cubepos &cp)
{

init edge from cp(cp);
init corner from cp(cp);
}

50. The inverse routine is very similar, just in reverse. Edges first.
〈Method bodies 15 〉 +≡

void permcube ::set edge perm (cubepos &cp) const
{

int et bits = kocsymm ::epsymm expand [et];
int em bits = kocsymm ::epsymm expand [em];
int et perm = s4expand [etp];
int em perm = s4expand [emp];
int eb perm = s4expand [ebp];
for (int i = 0; i < 12; i++)

if ((et bits � i) & 1) { /∗ top layer ∗/
cp .e[i] = cubepos ::edge val ((3 & et perm), cubepos ::edge ori (cp .e[i]));
et perm �= 2;

}
else if ((em bits � i) & 1) { /∗ middle layer ∗/

cp .e[i] = cubepos ::edge val ((3 & em perm) + 4, cubepos ::edge ori (cp .e[i]));
em perm �= 2;

}
else { /∗ bottom layer ∗/

cp .e[i] = cubepos ::edge val ((3 & eb perm) + 8, cubepos ::edge ori (cp .e[i]));
eb perm �= 2;

}
}

20 STORING PERMUTATIONS WITH PERMCUBE KOCSYMM §51

51. Corners next, and we put it together.
〈Method bodies 15 〉 +≡

void permcube ::set corner perm (cubepos &cp) const
{

int c8 4 bits = c8 4 expand [c8 4];
int ct perm = s4expand [ctp];
int cb perm = s4expand [cbp];
for (int i = 0; i < 8; i++)

if ((c8 4 bits � i) & 1) { /∗ top layer ∗/
cp .c[i] = cubepos ::corner val ((3 & ct perm), cubepos ::corner ori (cp .c[i]));
ct perm �= 2;

}
else {

cp .c[i] = cubepos ::corner val ((3 & cb perm) + 4, cubepos ::corner ori (cp .c[i]));
cb perm �= 2;

}
}
void permcube ::set perm (cubepos &cp) const
{

set edge perm (cp);
set corner perm (cp);
}

52. Our base constructor is next. Everything can be set to zero, except for the et and eb bits, which must
be set to values pulled from the epsymm expand arrays. Since we are using file static objects for kocsymm
that are defined in every compilation unit, we can assume that kocsymm and thus permcube is initialized
at any point this constructor is called.
〈Method bodies 15 〉 +≡

permcube ::permcube()
{

c8 4 = 0;
ctp = cbp = 0;
et = kocsymm ::epsymm compress [#f];
em = 0;
eb = kocsymm ::epsymm compress [#f00];
etp = emp = ebp = 0;
}

§53 KOCSYMM STORING PERMUTATIONS WITH PERMCUBE 21

53. Now we are prepared to initialize the move arrays. We need to be careful to initialize the edge group
variables to consistent values. We do the edges first.
〈 Initialize permcube 34 〉 +≡

cubepos cp , cp2 ;
for (int i = 0; i < EDGEPERM; i++) {

permcube pc ;
pc .em = i;
int remaining edges = #fff− kocsymm ::epsymm expand [i];
int mask = 0;
int bitsseen = 0;
while (bitsseen < 4) {

if (remaining edges & (mask + 1)) bitsseen ++;
mask = 2 ∗mask + 1;

}
pc .et = kocsymm ::epsymm compress [remaining edges & mask];
pc .eb = kocsymm ::epsymm compress [remaining edges &∼mask];
pc .set perm (cp);
for (int mv = 0; mv < NMOVES; mv ++) {

cp2 = cp ;
cp2 .movepc(mv);
permcube pc2 (cp2);
eperm move [i][mv] = (pc2 .em � 5) + pc2 .emp ;

}
}

54. The corner work is even easier; we follow the pattern we have established. In this case we need to
calculate two permutation impacts, rather than just one. At the same time, we compute the edge up/down
values.
〈 Initialize permcube 34 〉 +≡

for (int i = 0; i < C8_4; i++) {
permcube pc ;
pc .c8 4 = i;
pc .set perm (cp);
for (int mv = 0; mv < NMOVES; mv ++) {

cp2 = cp ;
cp2 .movepc(mv);
permcube pc2 (cp2);
cperm move [i][mv] = (pc2 .c8 4 � 10) + (pc2 .ctp � 5) + pc2 .cbp ;

}
}

55. We terminate the kocsymm . h file here.
〈 kocsymm.h 1 〉 +≡
#endif

22 TESTING KOCSYMM §56

56. Testing. We do some basic unit tests to verify functionality. First we do some basic tests; do our
basic constructors generate the same thing as the identity cube?
〈Basic tests 56 〉 ≡
{

cubepos cpi ;
permcube pci (cpi);
kocsymm kci (cpi);
permcube pct ;
kocsymm kct ;
if (pct 6= pci ∨ kct 6= kci)

error ("! problem with default constructors") ;
if (permcube ::c12 8 [pc .et] 6= 0)

error ("! bad mapping in 12−>8") ;
}

This code is used in section 62.

57. Next we test conversions. If we start with a random cubepos, can we convert it to a pair of kocsymm
and permcube structures, and then back again, with no loss of data? Also, does the edge permutation
coordinate in the kocsymm match the em field of the permcube ;
〈Test conversions back and forth 57 〉 ≡

for (int i = 0; i < 100000; i++) {
cp .randomize ();
kocsymm kc(cp);
permcube pc(cp);
if (kc .epsymm 6= pc .em)

error ("! mismatch in edge middle occupancy") ;
kc .set coset (cp2);
pc .set perm (cp2);
if (cp 6= cp2)

error ("! mismatch in conversion and back") ;
}

This code is used in section 62.

§58 KOCSYMM TESTING 23

58. Next we test the move routines. Do we get the same results when we use permcube and kocsymm
as we do when we use cubepos?
〈Test move routines 58 〉 ≡

for (int i = 0; i < 1000; i++) {
cp .randomize ();
kocsymm kc(cp);
permcube pc(cp);
int mv = random move ext ();
cp .movepc(mv);
cp2 = cp ;
kc .move (mv);
pc .move (mv);
kc .set coset (cp2);
pc .set perm (cp2);
if (cp 6= cp2)

error ("! mismatch in move test") ;
}

This code is used in section 62.

59. The next thing we test is canonicalization in kocsymm.
〈Test canonicalization 59 〉 ≡

for (int i = 0; i < 1000; i++) {
cp .randomize ();
kocsymm kc(cp);
for (int m = 1; m < KOCSYMM; m++) {

cp .remap into(m, cp2);
kocsymm kc2 (cp2);
if (kc2 < kc) kc = kc2 ;

}
kocsymm kc3 (cp);
kc3 .canon into(kc2);
if (kc2 6= kc)

error ("! canonicalization failuree") ;
}

This code is used in section 62.

24 TESTING KOCSYMM §60

60. Finally, we count how many canonical cosets of H there are. This takes a second or two.
〈Count cosets 60 〉 ≡

int s = 0;
for (int c = 0; c < CORNERSYMM; c++) {

int bits = kocsymm ::cornersymm [c].minbits ;
if (bits ≡ 1) {

s += EDGEOSYMM ∗ EDGEPERM;
}
else if (bits & 1) {

for (int eo = 0; eo < EDGEOSYMM; eo ++)
for (int ep = 0; ep < EDGEPERM; ep ++) {

kocsymm kc(c, eo , ep);
kc .canon into(kc2);
if (kc ≡ kc2) s++;
}

}
}
cout � "Final sum is " � s� endl ;
if (s 6= 138639780)

error ("! bad total coset calculation") ;
This code is used in section 62.

61. We do some move timing tests. We have to make sure to use the results, or the compiler might
eliminate the code. Note that these timing tests are for random moves, which may not be indicative of
actual performance in a real program; we only include these timings out of general interest. In general
we expect the kocsymm moves to be fastest, followed by permcube, and the two routines for cubepos
will probably bring up the rare. In any case, we expect any of the move routines to take only a few dozen
nanoseconds.
〈Move timing tests 61 〉 ≡

int mvs [10000];
for (int i = 0; i < 10000; i++) mvs [i] = random move ();
duration ();
for (int i = 0; i < 10000; i++)

for (int j = 0; j < 10000; j++) kc .move (mvs [j]);
cout � "Moving 100M kc took " � duration ()� endl ;
for (int i = 0; i < 10000; i++)

for (int j = 0; j < 10000; j++) pc .move (mvs [j]);
cout � "Moving 100M pc took " � duration ()� endl ;
for (int i = 0; i < 10000; i++)

for (int j = 0; j < 10000; j++) cp .move (mvs [j]);
cout � "Moving 100M cp (move) took " � duration ()� endl ;
for (int i = 0; i < 10000; i++)

for (int j = 0; j < 10000; j++) cp .movepc(mvs [j]);
cout � "Moving 100M cp (movepc) took " � duration ()� endl ;
if (cp < cp2 ∧ pc < pc2 ∧ kc < kc2) cout � "(Ignore this message.)" � endl ;

This code is used in section 62.

§62 KOCSYMM TESTING 25

62. We put all the pieces together in our main test routine.
〈 kocsymm_test.cpp 62 〉 ≡
#include "kocsymm.h"

#include <iostream>

using namespace std;
int main (int argc , char ∗argv [])
{

if (lrand48 () ≡ 0) srand48 (getpid () + time (0));
kocsymm kc , kc2 ;
permcube pc , pc2 ;
cubepos cp , cp2 ;
〈Basic tests 56 〉
〈Test conversions back and forth 57 〉
〈Test move routines 58 〉
〈Test canonicalization 59 〉
〈Count cosets 60 〉
〈Move timing tests 61 〉
}

a: 34, 35.
argc : 62.
argv : 62.
b: 34, 35.
bc : 13, 14, 38.
bits : 60.
bitsseen : 53.
b11100100 : 31.
c: 2, 14, 15, 16, 34, 38, 60.
calc symm : 26, 27.
canon into : 24, 25, 27, 59, 60.
cb perm : 51.
cbp : 29, 42, 46, 49, 51, 52, 54.
cc : 34.
cm : 25, 27.
coor : 34.
corner mapinfo: 19, 20, 21, 25, 27.
corner ori : 15, 51.
corner perm : 49.
corner val : 16, 51.
cornermove : 6, 8, 9, 17.
CORNERRSYMM: 18, 20, 21, 22.
CORNERSYMM: 2, 6, 8, 17, 20, 21, 22, 60.
cornersymm : 20, 21, 22, 25, 27, 60.
cornersymm expand : 20, 21, 22, 25.
cout : 60, 61.
cp : 10, 15, 16, 17, 22, 23, 47, 48, 49, 50, 51, 53,

54, 57, 58, 59, 61, 62.
cperm move : 43, 44, 46, 54.
cpi : 56.
cpp : 7.
cp2 : 17, 22, 23, 53, 54, 57, 58, 59, 61, 62.
cs : 22.

csymm : 2, 3, 5, 9, 15, 16, 17, 19, 22, 25, 27.
ct perm : 51.
ctp : 29, 42, 46, 49, 51, 52, 54.
cubepos: 1, 2, 3, 10, 15, 16, 17, 18, 22, 29, 47,

48, 49, 50, 51, 53, 56, 57, 58, 61, 62.
c12 8 : 39, 40, 41, 56.
c8 12 : 39, 40, 41.
C8_4: 29, 36, 37, 39, 40, 43, 44, 54.
c8 4 : 29, 42, 46, 49, 51, 52, 54.
c8 4 bits : 51.
c8 4 compact : 36, 37, 38, 41, 49.
c8 4 expand : 36, 37, 38, 51.
c8 4 parity : 36, 37, 38.
d: 34.
duration : 61.
eb : 29, 42, 46, 48, 52, 53.
eb perm : 50.
ebp : 29, 42, 46, 48, 50, 52.
edge ori : 15, 50.
edge perm : 48.
edge val : 16, 50.
edgeomap : 20, 21, 23, 25, 27.
edgeomove : 6, 8, 9, 17.
EDGEOSYMM: 2, 6, 8, 11, 12, 17, 20, 21, 23, 60.
EDGEPERM: 2, 6, 8, 17, 20, 21, 23, 39, 40, 41,

43, 44, 53, 60.
edgepmap : 20, 21, 23, 25, 27.
edgepmove : 6, 8, 9, 17, 28.
edgepxor : 20, 21, 23, 25, 27.
em : 29, 42, 46, 48, 50, 52, 53, 57.
em bits : 50.
em perm : 50.
emp : 29, 42, 46, 48, 50, 52, 53.

26 TESTING KOCSYMM §62

endl : 60, 61.
eo : 2, 15, 16, 23, 60.
eosymm : 2, 3, 5, 9, 15, 16, 17, 23, 25, 27.
ep : 2, 15, 16, 23, 60.
eperm move : 43, 44, 46, 53.
epsymm : 2, 3, 5, 9, 11, 15, 16, 17, 18, 23, 25,

27, 28, 57.
epsymm compress : 11, 12, 14, 15, 48, 52, 53.
epsymm expand : 11, 12, 14, 16, 41, 46, 50, 52, 53.
et : 29, 42, 46, 48, 50, 52, 53, 56.
et bits : 50.
et perm : 50.
etp : 29, 42, 46, 48, 50, 52.
expanded : 34.
expbits : 41.
FACT4: 29, 31, 32, 34.
getpid : 62.
hcoset : 34.
i: 14, 15, 16, 17, 34, 38, 41, 48, 49, 50, 51, 53,

54, 57, 58, 59, 61.
identity kc : 4.
identity pc : 30.
ii : 41.
in Kociemba group : 28.
init : 3, 7, 29, 33.
init corner from cp : 47, 49.
init edge from cp : 47, 48, 49.
initialized : 7.
j: 34, 38, 61.
k: 34, 38.
kc : 5, 17, 22, 23, 24, 25, 57, 58, 59, 60, 61, 62.
kci : 56.
kct : 56.
kc2 : 17, 22, 23, 59, 60, 61, 62.
kc3 : 59.
KOCSYMM: 18, 20, 21, 22, 23, 59.
kocsymm: 1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 16, 17, 18,

21, 22, 23, 24, 25, 26, 27, 29, 33, 36, 41, 43, 46,
47, 48, 50, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62.

KOCSYMM_H: 1.
lookup type: 2, 6, 8, 11, 12, 20, 21, 39, 40.
lowbits : 22.
lowm : 22.
lrand48 : 62.
m: 22, 23, 25, 27, 59.
main : 62.
mask : 53.
memcmp : 42.
mimap : 19.
minbits : 19, 22, 25, 27, 60.
minmap : 19, 22, 25, 27.
minval : 22.

move : 2, 6, 9, 45, 46, 58, 61.
movepc : 17, 53, 54, 58, 61.
muls4 : 34, 35.
mv : 9, 17, 28, 45, 46, 53, 54, 58.
mvs : 61.
neo : 25.
nep : 25.
nextmid : 16.
nextud : 16.
NMOVES: 6, 8, 17, 43, 44, 53, 54.
ori : 16.
parity : 38.
pc : 42, 53, 54, 56, 57, 58, 61, 62.
pci : 56.
pct : 56.
pc2 : 53, 54, 61, 62.
perm : 48, 49.
permcube: 1, 7, 18, 29, 30, 32, 33, 37, 39, 40,

42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54,
56, 57, 58, 61, 62.

r: 13, 27, 35.
random move : 61.
random move ext : 58.
randomize : 57, 58, 59.
remaining edges : 53.
remap into : 22, 23, 59.
rotval : 14.
s: 16, 60.
SAFETY_CHECKS: 46.
set corner perm : 47, 51.
set coset : 10, 16, 17, 22, 23, 47, 57, 58.
set edge perm : 47, 50, 51.
set perm : 47, 51, 53, 54, 57, 58.
srand48 : 62.
std: 7, 62.
s4compress : 31, 32, 34, 48, 49.
s4expand : 31, 32, 34, 50, 51.
s4inv : 31, 32, 34.
s4mul : 31, 32, 34, 46.
t: 46.
teosymm : 27.
tepsymm : 27.
time : 62.
v: 13.

KOCSYMM NAMES OF THE SECTIONS 27

〈Basic tests 56 〉 Used in section 62.

〈Constants for kocsymm and permcube 18, 19 〉 Used in section 2.

〈Count cosets 60 〉 Used in section 62.

〈 Initialize kocsymm 14, 17, 22, 23 〉 Used in section 7.

〈 Initialize permcube 34, 38, 41, 53, 54 〉 Used in section 33.

〈Method bodies 15, 16, 25, 27, 33, 46, 48, 49, 50, 51, 52 〉 Used in section 7.

〈Methods for kocsymm 3, 5, 9, 10, 24, 26, 28 〉 Used in section 2.

〈Methods for permcube 42, 45, 47 〉 Used in section 29.

〈Move timing tests 61 〉 Used in section 62.

〈Static data declarations for kocsymm 6, 11, 20 〉 Used in section 2.

〈Static data declarations for permcube 31, 36, 39, 43 〉 Used in section 29.

〈Static data instantiations 8, 12, 21, 32, 37, 40, 44 〉 Used in section 7.

〈Test canonicalization 59 〉 Used in section 62.

〈Test conversions back and forth 57 〉 Used in section 62.

〈Test move routines 58 〉 Used in section 62.

〈Utility methods 13, 35 〉 Used in section 7.

〈 kocsymm.cpp 7 〉
〈 kocsymm.h 1, 2, 4, 29, 30, 55 〉
〈 kocsymm_test.cpp 62 〉

KOCSYMM

Section Page
Introduction . 1 1
Numbering the coordinates . 11 5
Symmetry . 18 8
Storing permutations with permcube . 29 12
Testing . 56 22

	Introduction
	Numbering the coordinates
	Symmetry
	Storing permutations with permcube
	Testing
	Names of the sections
	Basic tests
	Constants for kocsymm and permcube
	Count cosets
	Initialize kocsymm
	Initialize permcube
	Method bodies
	Methods for kocsymm
	Methods for permcube
	Move timing tests
	Static data declarations for kocsymm
	Static data declarations for permcube
	Static data instantiations
	Test canonicalization
	Test conversions back and forth
	Test move routines
	Utility methods
	kocsymm.cpp
	kocsymm.h
	kocsymm_test.cpp

