
§1 HCOSET INTRODUCTION 1

1. Introduction. This is a coset solver for Rubik’s Cube, using the cosets generated by the group
{U,F2, R2, D,B2, L2}. If you have not read cubepos, kocsymm, and phase1prune, you should read those
before you try to understand this program.

〈 hcoset.cpp 1 〉 ≡
const char ∗BANNER = "This is hcoset 1.1, (C) 2010−2012 Tomas Rokicki. All Right\

s Reserved.";
#include "phase1prune.h"

#include <pthread.h>

#include <iostream>

#include <map>

#include <set>

#include <cstdio>

using namespace std;

〈Data declarations 2 〉
〈Utility functions 13 〉
〈Threading objects 48 〉
void docoset (int seq , const char ∗movestring)
{
〈Handle one coset from movestring 8 〉
}
int main (int argc , char ∗argv [])
{
double progstart = walltime ();

duration ();
〈Parse arguments 3 〉
〈 Initialize the program 7 〉
〈Handle the work 81 〉
〈Cleanup 54 〉
phase1prune ::check integrity ();
cout � "Completed in " � (walltime ()− progstart)� endl ;
}

2. The first thing we take up is argument parsing. Two arguments we know we need up front include a
verbosity level (the default is 1, but the −q option makes it 0 and the −v option makes it 2), and a thread
count.

〈Data declarations 2 〉 ≡
int verbose = 1;
int numthreads = 1;
const int MAX_THREADS = 32;

See also sections 4, 6, 10, 15, 17, 19, 21, 23, 29, 32, 35, 39, 43, 44, 49, 56, 61, 66, 75, 76, 79, and 82.

This code is used in section 1.

2 INTRODUCTION HCOSET §3

3. Parsing the arguments is boilerplate code.

〈Parse arguments 3 〉 ≡
int oargc = argc ;
char ∗∗oargv = argv ;

while (argc > 1 ∧ argv [1][0] ≡ ’−’) {
argc −−;
argv ++;
switch (argv [0][1]) {
case ’v’: verbose ++;

break;
case ’q’: verbose = 0;

break;
case ’t’:

if (argc < 2)
error ("! not enough arguments to −t") ;

if (sscanf (argv [1], "%d",&numthreads) 6= 1)
error ("! bad thread count argument") ;

if (numthreads < 1 ∨ numthreads > MAX_THREADS)
error ("! bad value for thread count") ;

argc −−;
argv ++;
break;
〈More arguments 5 〉

default:
error ("! bad argument") ;

}
}

This code is used in section 1.

4. Usually the pruning tables are read from disk; if they don’t exist, they are created, and then written to
disk. If for some reason you do not want to write the pruning tables to disk, you can use the −W option to
inhibit this.

〈Data declarations 2 〉 +≡
int skipwrite = 0;

5. Parsing this argument is easy.

〈More arguments 5 〉 ≡
case ’W’: skipwrite ++;
break;

See also sections 11, 30, 53, 67, and 77.

This code is used in section 3.

§6 HCOSET INTRODUCTION 3

6. This coset solver works by finding as many phase 1 solutions to a particular group position as it can;
each phase 1 solution leads to a particular element of the coset. As soon as we have discovered all possible
positions, we are done.

We start by writing the simplest possible coset solver; we can use this to verify results from faster, more
optimized solvers. The simplest possible solver just keeps the element information in a set.

〈Data declarations 2 〉 +≡
moveseq repseq ;
set〈permcube〉 world ;
kocsymm repkc ;
permcube reppc ;
cubepos repcp ;

7. We always start by printing the arguments and the banner.

〈 Initialize the program 7 〉 ≡
if (verbose) cout � BANNER � endl � flush ;
for (int i = 0; i < oargc ; i++) cout � " " � oargv [i];
cout � endl ;

See also sections 16, 22, 31, 33, 34, 36, 40, 47, 50, and 84.

This code is used in section 1.

8. Handling a coset starts by parsing the move string. Note that phase1prune is automatically protected
against multiple initialization.

〈Handle one coset from movestring 8 〉 ≡
int oldsingcount = singcount ;
const char ∗tmp = movestring ;

repseq = cubepos ::parse moveseq (tmp);
if (∗tmp)
error ("! extra stuff at end of input moveseq") ;

cout � "Coset representative " � seq � " " � movestring � endl ;
phase1prune :: init (skipwrite);

double cosetstart = walltime ();

See also sections 9, 12, 20, 26, 71, and 74.

This code is used in section 1.

9. Next, we execute the move sequence on our representative kocsymm.

〈Handle one coset from movestring 8 〉 +≡
repkc = identity kc ;
reppc = identity pc ;
repcp = identity cube ;
for (unsigned int i = 0; i < repseq .size (); i++) {

repkc .move (repseq [i]);
reppc .move (repseq [i]);
repcp .move (repseq [i]);
}

#ifdef LEVELCOUNTS

setup levmul (repkc , repseq);
#endif

4 INTRODUCTION HCOSET §10

10. We want to support different levels of slowness. Level 0 is the slowest; level 1 the next fastest, and
level 2, the default, is the fastest. In addition, we want to limit the maximum level to search with an option;
this gives us a program that actually terminates. We also have a separate overall maximum level, which we
will discuss later. We also maintain a global variable that indicates the depth we are currently exploring;
this is only used by the prepass.

〈Data declarations 2 〉 +≡
int slow = 2;
int maxsearchdepth = 35;
int maxdepth = 35;
int global depth ;

11. We use the −s option to set the slowness.

〈More arguments 5 〉 +≡
case ’s’:

if (argc < 2)
error ("! not enough arguments to −s") ;

if (sscanf (argv [1], "%d",&slow) 6= 1)
error ("! bad −s argument") ;

if (slow < 0 ∨ slow > 2)
error ("! bad value for −s") ;

argc −−;
argv ++;
break;

case ’d’:
if (argc < 2)
error ("! not enough arguments to −d") ;

if (sscanf (argv [1], "%d",&maxdepth) 6= 1)
error ("! bad −d argument") ;

if (maxdepth < 0)
error ("! bad value for −d") ;

if (maxdepth < maxsearchdepth) maxsearchdepth = maxdepth ;
argc −−;
argv ++;
break;

case ’S’:
if (argc < 2)
error ("! not enough arguments to −S") ;

if (sscanf (argv [1], "%d",&maxsearchdepth) 6= 1)
error ("! bad −S argument") ;

if (maxsearchdepth < 0)
error ("! bad value for −S") ;

argc −−;
argv ++;
break;

12. If the slow value is zero, we use the slowest search.

〈Handle one coset from movestring 8 〉 +≡
if (slow ≡ 0) slowsearch1 (repkc , reppc);

§13 HCOSET INTRODUCTION 5

13. The slow search routine is much like the one in the two-phase solver.

〈Utility functions 13 〉 ≡
void slowsearch1 (const kocsymm &kc , const permcube &pc , int togo , int movemask , int canon)
{
if (togo ≡ 0) {

if (kc ≡ identity kc) {
probes ++;
world .insert (pc);

}
return;

}
togo −−;

kocsymm kc2 ;
permcube pc2 ;
int newmovemask ;

while (movemask) {
int mv = ffs (movemask)− 1;

movemask &= movemask − 1;
kc2 = kc ;
kc2 .move (mv);

int nd = phase1prune :: lookup(kc2 , togo ,newmovemask);

if (nd ≤ togo) {
pc2 = pc ;
pc2 .move (mv);

int new canon = cubepos ::next cs (canon ,mv);

slowsearch1 (kc2 , pc2 , togo ,newmovemask & cubepos ::cs mask (new canon),new canon);
}

}
}

See also sections 14, 18, 24, 25, 27, 28, 37, 38, 41, 42, 45, 46, 51, 52, 55, 57, 58, 59, 60, 62, 69, 78, 80, 83, and 85.

This code is used in section 1.

14. Finally, we do the search. We continue forever in this slow mode (there’s no way it will ever finish,
with just this logic). We put the slow search logic in a subroutine.

〈Utility functions 13 〉 +≡
void slowsearch1 (const kocsymm &kc , const permcube &pc)
{

duration ();
for (int d = phase1prune :: lookup(repkc); d < maxsearchdepth ; d++) {

probes = 0;

long long prevlev = uniq ;

slowsearch1 (kc , pc , d, ALLMOVEMASK, CANONSEQSTART);
uniq = world .size ();

long long thislev = uniq − prevlev ;

if (verbose) cout � "Tests at " � d � " " � probes � " in " � duration () � " uniq " �
uniq � " lev " � thislev � endl ;

}
}

6 INTRODUCTION HCOSET §15

15. Congratulations! At this point we have a coset solver!
The slow search runs slowly, but more importantly, it typically runs out of memory rather quickly. To

solve this, rather than using a set, we can use a vector and sort it to calculate uniqueness. But this would
not make more than a factor of three improvement, probably, so we go ahead and take the next step—a big
bitmap, one bit per element of the coset. With this data structure, memory usage, though large, is fixed.

The size of these cosets is 19,508,428,800 elements, so the bitmap needs to be about 2.5GB in size. On
a 32-bit platform, it is unlikely we will be able to allocate that much memory contiguously. Furthermore,
because of some optimizations we will make a little later, we will want two bitmaps.

The bitmaps will be indexed by corner permutation and edge permutation. The corner permutation has a
smaller range of 8!, so we use it to select a memory page. Each memory page must handle all possible edge
permutations; they have a range of 8!4!/2 (the division by two is because the corner and edge permutations
must match).

〈Data declarations 2 〉 +≡
const int FACT8 = 40320;
const int PAGESIZE = (FACT8 ∗ FACT4/2/8);
unsigned char ∗∗bitp1 , ∗∗bitp2 ;

16. We must allocate these arrays at the start.

〈 Initialize the program 7 〉 +≡
bitp1 = (unsigned char ∗∗) calloc(FACT8, sizeof (unsigned char ∗));
bitp2 = (unsigned char ∗∗) calloc(FACT8, sizeof (unsigned char ∗));
if (bitp1 ≡ 0 ∨ bitp2 ≡ 0)
error ("! no memory") ;

17. When we set a bit in the large bitmap, we need to ensure that it is actually clear before we set it, in
order to maintain the appropriate count. We need to use a 64-bit value to hold this count. We also define
the target—how large each coset is.

〈Data declarations 2 〉 +≡
long long uniq = 0;
long long probes = 0;
const long long TARGET = FACT8 ∗ (long long) FACT8 ∗ (long long) FACT4/2;

#ifdef LEVELCOUNTS

long long uniq ulev = 0;
long long sum ulev [30];

#endif

§18 HCOSET INTRODUCTION 7

18. Again looking ahead somewhat, we need a method to get a new cleared page. The reason we allocate
an extra byte can be found in the section on the prepass, below; it is critical that we allocate that extra
byte. We will assume we may be freeing and allocating pages, so we set up a queue for that purpose.

〈Utility functions 13 〉 +≡
vector〈unsigned char ∗〉 pageq ;

unsigned char ∗getpage ()
{
unsigned char ∗r = 0;

if (pageq .size () > 0) {
r = pageq [pageq .size ()− 1];
pageq .pop back ();

}
else {
r = (unsigned char ∗) malloc(PAGESIZE + 1);
if (r ≡ 0)

error ("! no memory") ;
}
return r;
}
unsigned char ∗getclearedpage ()
{
unsigned char ∗r = getpage ();

memset (r, 0, PAGESIZE);
return r;
}
void freepage (unsigned char ∗r)
{

pageq .push back (r);
}

19. In some circumstances, we may want to run this program over many cosets but to a limited depth. In
this case, freeing and clearing the bitmaps can dominate the runtime. To minimize this impact, we use a
small array to indicate which pages were touched.

〈Data declarations 2 〉 +≡
#ifdef FASTCLEAN

unsigned char touched [FACT8];
int did a prepass ;

#endif

8 INTRODUCTION HCOSET §20

20. At the start of the program, we initialize our bitmap and some other variables. If we already have a
page, we assume it is cleared (our cleanup routine will ensure this).

〈Handle one coset from movestring 8 〉 +≡
for (int i = 0; i < FACT8; i++)
if (bitp1 [i] ≡ 0) bitp1 [i] = getclearedpage ();

uniq = 0;
#ifdef FASTCLEAN

memset (touched , 0, sizeof (touched));
did a prepass = 0;

#endif
#ifdef LEVELCOUNTS

uniq ulev = 0;
#endif

21. The bit order of the lowest order bits will turn out to be absolutely critical later on. To support this
we introduce an array that translates a FACT4 value into a particular offset.

〈Data declarations 2 〉 +≡
unsigned char permtobit [FACT4];
unsigned char bittoperm [FACT4];

22. For now we initialize it to just sequential order.

〈 Initialize the program 7 〉 +≡
for (int i = 0; i < FACT4; i++) {

permtobit [i] = i;
bittoperm [i] = i;
}

23. Modern computers have processors so fast they can execute hundreds of instructions during the time
it takes to fetch a single memory value. Here, in this one case, we can actually defer the checking of the new
bit that might be set until the next time this routine is called, and issue a prefetch to the memory address
that it will need. Doing this makes a substantial improvement in the overall performance of the program.

〈Data declarations 2 〉 +≡
unsigned char saveb ;
unsigned char ∗savep ;

§24 HCOSET INTRODUCTION 9

24. We need a routine that takes a permcube and sets the appropriate bit in the bitmap. We already
have code that handles most of the work for us. We actually check the previous bit, and set up for the next
bit. Note how we do as much work as possible before the flushbit () call, to give the memory system as much
time as possible to fetch the data. This is one of the major keys to our excellent search performance.

〈Utility functions 13 〉 +≡
void flushbit ()
{
if (savep 6= 0) {

if (0 ≡ (∗savep & saveb)) {
∗savep |= saveb ;
uniq ++;

}
savep = 0;

}
}
void setonebit (const permcube &pc)
{
int cindex = (pc .c8 4 ∗ FACT4 + pc .ctp) ∗ FACT4 + pc .cbp ;
unsigned int eindex = (((permcube ::c12 8 [pc .et] ∗ FACT4) + pc .etp) ∗ FACT4/2 + (pc .ebp �

1)) ∗ FACT4 + permtobit [pc .emp];
#ifdef FASTCLEAN

touched [cindex] = 1;
#endif

probes ++;
flushbit ();
savep = bitp1 [cindex] + (eindex � 3);

builtin prefetch (savep);
saveb = 1� (eindex & 7);
}

10 INTRODUCTION HCOSET §25

25. With this written, the second search routine is very close to the first. We also introduce a small
optimization; we do not do the final two lookups when there’s only one more move to go because we know
they are unnecessary. The unrolling of the loop is this fashion is another major key to our performance.
Note that we count on ffs () performing well; that’s something to check on your architecture.

〈Utility functions 13 〉 +≡
void slowsearch2 (const kocsymm &kc , const permcube &pc , int togo , int movemask , int canon)
{
if (togo ≡ 0) {

if (kc ≡ identity kc) setonebit (pc);
return;

}
togo −−;

kocsymm kc2 ;
permcube pc2 ;
int newmovemask ;

while (movemask) {
int mv = ffs (movemask)− 1;

movemask &= movemask − 1;
kc2 = kc ;
kc2 .move (mv);

int nd = phase1prune :: lookup(kc2 , togo ,newmovemask);

if (nd ≤ togo) {
pc2 = pc ;
pc2 .move (mv);

int new canon = cubepos ::next cs (canon ,mv);
int movemask3 = newmovemask & cubepos ::cs mask (new canon);

if (togo ≡ 1) { /∗ just do the moves. ∗/
permcube pc3 ;

while (movemask3) {
int mv2 = ffs (movemask3)− 1;

movemask3 &= movemask3 − 1;
pc3 = pc2 ;
pc3 .move (mv2);
setonebit (pc3);

}
}
else {

slowsearch2 (kc2 , pc2 , togo ,movemask3 ,new canon);
}

}
}
}

26. If the slow value is one, we use the next fastest search.

〈Handle one coset from movestring 8 〉 +≡
if (slow ≡ 1) slowsearch2 (repkc , reppc);

§27 HCOSET INTRODUCTION 11

27. Our outer routine for the second level search is here.

〈Utility functions 13 〉 +≡
void slowsearch2 (const kocsymm &kc , const permcube &pc)
{

duration ();
for (int d = phase1prune :: lookup(repkc); d < maxsearchdepth ; d++) {

probes = 0;

long long prevlev = uniq ;

slowsearch2 (kc , pc , d, ALLMOVEMASK, CANONSEQSTART);
flushbit ();

long long thislev = uniq − prevlev ;

if (verbose) cout � "Tests at " � d � " " � probes � " in " � duration () � " uniq " �
uniq � " lev " � thislev � endl ;

}
}

28. Many times coming up, we will need to store an edge coordinate into a permcube. This routine
makes it easy.

〈Utility functions 13 〉 +≡
void unpack edgecoord (permcube &pc , int e8 4 , int epp1 , int epp2)
{

pc .et = permcube ::c8 12 [e8 4];
pc .etp = epp1 ;
pc .ebp = epp2 ;
pc .eb = kocsymm ::epsymm compress [#f0f− kocsymm ::epsymm expand [pc .et]];
pc .em = 0;
}
void unpack edgecoord (permcube &pc , int coord)
{

unpack edgecoord (pc , coord /(FACT4 ∗ FACT4), coord /FACT4 % FACT4, coord % FACT4);
}

12 PREPASS HCOSET §29

29. Prepass. We’ve got a tremendously fast search routine at this point, and efficient storage for the
coset. There is one more major trick in our arsenal, one that expands the capabilities of this coset solver
tremendously. That technique is the prepass.

Once a position has a phase 1 solution (that is, it is in the group H), it has a tendency to stay there; 10 of
the 18 possible moves leave it in the coset. Most canonical sequences that are a solution to phsae one end in
a move in H. The prepass allows us to handle all sequences ending in H, in a pass over the bitmap, without
needing to explicitly search. This speeds up our search by a factor of two, typically, and for some cosets,
like the trivial coset, speeds it up by a much larger factor. For instance, for the trivial coset, at distance 12,
there are 16,019,916,192 canonical sequences that solve phase 1, but only 329,352,128 of those, or about one
in fifty, end in a move not in H. This means a huge speedup for some cosets, and a good speedup for other
cosets.

Use of the prepass also permits us to calculate bounds on the overall distance of the coset without finding
optimal solutions for every single position.

The prepass works by taking the current set of found solutions, and extending each one by all ten moves
in H, and adding those to the set. That’s why we declared bitp2 above; this is to hold a second copy of the
bitmap, so we can maintain a separate previous and next bitmap during the prepass.

For proving a bound of 20, the prepass is the key operation in the coset solver, and the one that will take
up the bulk of the time. The trick to doing this efficiently is to lay out the bits in memory strategically, so
that almost all of the work can be done with simple logical operations and a lookup table or two.

For checking, we may want to disable the prepass.

〈Data declarations 2 〉 +≡
int disable prepass = 0;

30. The −U option disables the prepass.

〈More arguments 5 〉 +≡
case ’U’: disable prepass ++;

break;

§31 HCOSET PREPASS 13

31. The layout is already implicit in the setbit routine above, although we have not finished all the code
we need, nor have we set up the bittoperm and permtobit arrays appropriately.

Let’s start with the least significant bits, the emp bits. Setting the mapping of middle edge permutations
to bit locations. For a given set of corner and up/down edge permutations, there are twelve possible middle
edge permutations that preserve parity. Six of the ten moves in H do not affect the middle edge permutation,
so for those six moves, we can just copy the middle edge bits over; the assignment of bits to middle edge
permutations is not affected by those six moves. For the remaining four moves (F2, R2, B2, L2), every move
jumbles the bits in a specific way. We assign the bits to the permutations and vice versa in a way such that
all the even permutations are in the low order bits, and such that the odd permutation bit assignment of
the 12 is that from the corresponding even permutation after the move F2. This is how we assign bits to
permutations; the following code does the work for us.

〈 Initialize the program 7 〉 +≡
const int F2 = 1 + TWISTS;
const int R2 = 1 + 2 ∗ TWISTS;
const int B2 = 1 + 4 ∗ TWISTS;
const int L2 = 1 + 5 ∗ TWISTS;
permcube pc ;

for (int i = 0; i < FACT4/2; i++) {
permtobit [2 ∗ i] = i;
pc .emp = 2 ∗ i;
pc .move (F2);
permtobit [pc .emp] = 12 + i;
}
for (int i = 0; i < FACT4; i++) bittoperm [permtobit [i]] = i;

32. For the remaining moves, we have to calculate the rearrangements of the 12 bits that can happen (for
both even and odd values).

〈Data declarations 2 〉 +≡
const int SQMOVES = 3;
short rearrange [2][SQMOVES][1� 12];

33. Initializing these is just a slog through the possibilities. We first set all the single-bit values, and then
we combine them.

〈 Initialize the program 7 〉 +≡
const int mvs [] = {R2, B2, L2};
for (int mvi = 0; mvi < SQMOVES; mvi ++)
for (int p = 0; p < FACT4; p++) {

pc .emp = p;
pc .move (mvs [mvi]);
rearrange [p & 1][mvi][1� (permtobit [p] % 12)] = 1� (permtobit [pc .emp] % 12);

}
for (int p = 0; p < 2; p++)
for (int mvi = 0; mvi < SQMOVES; mvi ++)
for (int i = 1; i < (1� 12); i++) {
int lowb = i &−i;
rearrange [p][mvi][i] = rearrange [p][mvi][lowb] | rearrange [p][mvi][i− lowb];

}

14 PREPASS HCOSET §34

34. It turns out, with all the choices we have made (all of which were deterministic), the values for B2 are
the same going forwards or backwards. We take advantage of that to reduce cache misses in the inner loop,
but we check this still holds here.

〈 Initialize the program 7 〉 +≡
for (int i = 0; i < (1� 12); i++)
if (rearrange [0][1][i] 6= rearrange [1][1][i])

error ("! mismatch in rearrange") ;

35. For the next most significant bits, we use the up/down edge permutation. We use a lookup array to
perform this mapping. For indexing, we drop the least significant bit of the up/down edge mapping, since it
can be reconstructed from the parity of the other permutation components. We take advantage of the fact
that consecutive pairs of permutations indexed by (2k, 2k + 1), when right-multiplied by any element of S4,
yields another pair, either (2j, 2j + 1) or (2j + 1, 2j). (See kocsymm for more information.) (This is also
true for groups of 6, which help make this algorithm particularly cache-friendly.) Note that this array is
reasonably large, but we access it sequentially. We premultiply by 3 to get an actual page offset. Our pages
are 8! ∗ 3/2 or 60,480 bytes long, so these indices barely fit into an unsigned short.

〈Data declarations 2 〉 +≡
const int PREPASS_MOVES = 10;
unsigned short eperm map [FACT8/2][PREPASS_MOVES];

36. The initialization is long but straightforward.

〈 Initialize the program 7 〉 +≡
int ind = 0;

for (int e8 4 = 0; e8 4 < C8_4; e8 4 ++)
for (int epp1 = 0; epp1 < FACT4; epp1 ++)

for (int epp2 = 0; epp2 < FACT4; epp2 += 2, ind ++) {
int mvi = 0;

for (int mv = 0; mv < NMOVES; mv ++) {
if (¬kocsymm :: in Kociemba group(mv)) continue;
unpack edgecoord (pc , e8 4 , epp1 , epp2);
pc .move (mv);
eperm map [ind][mvi] = ((permcube ::c12 8 [pc .et] ∗ FACT4 + pc .etp) ∗ FACT4 + pc .ebp)/2 ∗ 3;
mvi ++;
}

}

§37 HCOSET THE INNER LOOP 15

37. The inner loop. We are ready now for the innermost loop of the program, the one that accounts
for probably two-thirds of the runtime in our effort to prove 20. Examine the assembly generated by your
compiler for this routine very carefully. The inner loop should have about 50 instructions, straight line code;
if you see anything that could be improved, change it here.

Input to this function is a bit complicated. We have a destination page we are going to write (but
surprisingly, not read). We have a set of ten source pages, one for each of the instructions in H, from which
we will read bits, transform them into the new locations in our destination page, and write them back.
Finally, we have the base, which is the portion of the pages to do. This routine does 12 · 24 · 24 bits from
each page, which corresponds to 2,304 bytes from each page. One full execution of this routine does 69,120
group multiplies. The inner body is executed 288 times on each call, and each inner body execution does
240 group multiplies.

The code below uses unaligned reads and writes. When I was originally writing this code, I used a bunch
of byte reads and writes, but it turned out to be significantly faster to just use unaligned memory accesses.
On modern Intel processors, there is almost no penalty for unaligned reads and writes. On other processors,
this code may perform substantially suboptimally.

Note that this routine smashes one byte past the end of each page. For this reason, we allocate each page
one byte larger than it really needs to be. The code restores the smashed value at the end.

This routine does not read the source. With the exception of the empty sequence, every sequence that
ends in the trivial H group either ends with a move in the H group, or ends with one of the eight moves F1,
F3, R1, R3, B1, B3, L1, L3. These eight moves always occur in pairs, as do the sequences that use them;
any sequence ending in F1 that ends in H has a matching sequence that ends in F3 that also ends in H.
What this means is that for every position that has already been found, there is a matching position also
already found that is either F2, R2, B2, or L2 away. So, except for the trivial coset and the empty sequence,
we never need to consider the source bitmap in the inner loop; just considering the ten adjacent bitmaps
always suffices and never loses any bits.

〈Utility functions 13 〉 +≡
void innerloop3 (unsigned char ∗dst ,unsigned char ∗∗srcs , int base)
{

dst += 3 ∗ base ;

unsigned char ∗end = dst + 12 ∗ 24 ∗ 3;
unsigned char tval = ∗end ; /∗ save this byte ∗/
unsigned short ∗cpp = eperm map [base];

for (; dst < end ; dst += 3, cpp += PREPASS_MOVES) {
int wf2 = ∗(int ∗)(srcs [3] + cpp [3]);
int wr2 = ∗(int ∗)(srcs [4] + cpp [4]);
int wb2 = ∗(int ∗)(srcs [8] + cpp [8]);
int wl2 = ∗(int ∗)(srcs [9] + cpp [9]);

∗(int ∗) dst = (((wf2 & #fff) | /∗ F2, even to odd ∗/
rearrange [0][0][wr2 & #fff] | /∗ R2, even to odd ∗/
rearrange [0][1][wb2 & #fff] | /∗ B2, even to odd ∗/
rearrange [0][2][wl2 & #fff])� 12) | /∗ L2, even to odd ∗/
((wf2 � 12) & #fff) | /∗ F2, odd to even ∗/
rearrange [1][0][(wr2 � 12) & #fff] | /∗ R2, odd to even ∗/
rearrange [0][1][(wb2 � 12) & #fff] | /∗ B2, odd to even ∗/
rearrange [1][2][(wl2 � 12) & #fff] | /∗ L2, odd to even ∗/
∗(int ∗)(srcs [0] + cpp [0]) | /∗ U1 ∗/
∗(int ∗)(srcs [1] + cpp [1]) | /∗ U2 ∗/
∗(int ∗)(srcs [2] + cpp [2]) | /∗ U3 ∗/
∗(int ∗)(srcs [5] + cpp [5]) | /∗ D1 ∗/
∗(int ∗)(srcs [6] + cpp [6]) | /∗ D2 ∗/
∗(int ∗)(srcs [7] + cpp [7]); /∗ D3 ∗/

16 THE INNER LOOP HCOSET §37

}
∗end = tval ; /∗ restore smashed value ∗/
}

38. After updating a page we want to count the bits set. This routine does a fairly good job. This can
probably be replaced with some intrinsics that might do a better job.

〈Utility functions 13 〉 +≡
int countbits (unsigned int ∗a)
{
int r = 0;
const unsigned int mask1 = #55555555;
const unsigned int mask2 = #33333333;
const unsigned int mask3 = #0f0f0f0f;

for (int i = 0; i < PAGESIZE; i += 24) {
unsigned int w1 = ∗a++;
unsigned int w2 = ∗a++;
unsigned int w3 = ∗a++;

w1 = (w1 & mask1) + ((w1 � 1) & mask1) + (w2 & mask1);
w2 = ((w2 � 1) & mask1) + (w3 & mask1) + ((w3 � 1) & mask1);

unsigned int s1 = (w1 & mask2) + ((w1 � 2) & mask2) + (w2 & mask2) + ((w2 � 2) & mask2);

s1 = (s1 & mask3) + ((s1 � 4) & mask3);
w1 = ∗a++;
w2 = ∗a++;
w3 = ∗a++;
w1 = (w1 & mask1) + ((w1 � 1) & mask1) + (w2 & mask1);
w2 = ((w2 � 1) & mask1) + (w3 & mask1) + ((w3 � 1) & mask1);

unsigned int s2 = (w1 & mask2) + ((w1 � 2) & mask2) + (w2 & mask2) + ((w2 � 2) & mask2);

s1 += (s2 & mask3) + ((s2 � 4) & mask3);
r += 255 & ((s1 � 24) + (s1 � 16) + (s1 � 8) + s1);

}
return r;
}

39. Sometimes, like when we are doing level counting, we need to do a bit count as above, but we also need
to calculate a weighted sum. This routine handles that; it is slower than the above routine, but it should
only very rarely be called. It depends on an array containing bit counts.

〈Data declarations 2 〉 +≡
#ifdef LEVELCOUNTS

unsigned char bc [1� 12];
#endif

40. Setting up the bit count array is easy.

〈 Initialize the program 7 〉 +≡
#ifdef LEVELCOUNTS

for (int i = 1; i < (1� 12); i++) bc [i] = 1 + bc [i & (i− 1)];
#endif

§41 HCOSET THE INNER LOOP 17

41. Finally, we have our alternative bitcount function. This does nasty things with pointers; it will only
work, for instance, on a little endian machine (just like our prepass).

〈Utility functions 13 〉 +≡
#ifdef LEVELCOUNTS

int parity (int coord)
{
return (permcube ::c8 4 parity [coord /(FACT4 ∗ FACT4)]⊕ (coord /24)⊕ coord) & 1;
}
int countbits2 (int cperm , int ∗a, int &rv2)
{
int coparity = parity (cperm);
int r = 0, r2 = 0;
int ind = 0;

for (int e8 4 = 0; e8 4 < C8_4; e8 4 ++) {
int p2 = coparity ⊕ permcube ::c8 4 parity [e8 4];

for (int epp1 = 0; epp1 < FACT4; epp1 ++) {
int off1 = (p2 ⊕ epp1) & 1;
int off2 = 1− off1 ;

for (int epp2 = 0; epp2 < FACT4; epp2 += 2, ind += 2) {
int w = ∗a;
int v1 = bc [(w & #fff)];
int v2 = bc [((w � 12) & #fff)];

r += v1 + v2 ;
r2 += v1 ∗ levmul [ind + off1] + v2 ∗ levmul [ind + off2];
a = (int ∗)(((char ∗) a) + 3);
}

}
}
rv2 = r2 ;
return r;
}

#endif

42. For even more cache-friendliness, we do sets of related pages as a group. These pages are typically
related by the up and down face moves. To store data about every collection of pages, we use the following
structure, which contains pointers to the pages, as well as a mapping of the order to do the various offsets
in.

〈Utility functions 13 〉 +≡
struct elemdata {
unsigned char ∗dst ;
unsigned char ∗from [PREPASS_MOVES];
unsigned char e84map [70];
};

43. The number of pages in a collection is defined by this constant.

〈Data declarations 2 〉 +≡
const int STRIDE = 16;

18 THE INNER LOOP HCOSET §44

44. The ordering of pages to solve was defined by an external optimizer, which we do not go into here.
Suffice it to say that cornerorder contains a permutation of the integers 0 . . . 40319; any order will work,
but some orders may cause this program to use a fair bit less memory. The output of this routine is in an
include file named corner order .h and its values are stored in an array called cornerorder .

〈Data declarations 2 〉 +≡
#include "corner_order.h"

45. The following routine computes the neighbors of a corner.

〈Utility functions 13 〉 +≡
void calcneighbors (int cperm , int ∗a)
{
permcube pc , pc2 ;

pc .c8 4 = cperm/(FACT4 ∗ FACT4);
pc .ctp = cperm/FACT4 % FACT4;
pc .cbp = cperm % FACT4;
for (int mv = 0; mv < NMOVES; mv ++) {
if (¬kocsymm :: in Kociemba group(mv)) continue;
pc2 = pc ;
pc2 .move (mv);
∗a++ = (pc2 .c8 4 ∗ FACT4 + pc2 .ctp) ∗ FACT4 + pc2 .cbp ;

}
}

§46 HCOSET THE INNER LOOP 19

46. Our main routine to do a collection of STRIDE pages is below. The magic array moveseq16 is the
sequence of moves that generates the relevant values in a single group of corder order ; we check that this
holds.

〈Utility functions 13 〉 +≡
int moveseq16 [] = {2, 9, 0, 9, 2, 9, 0, 0, 0, 11, 2, 11, 0, 11, 2, 0};
unsigned char initorder [70];

void doouter (int r)
{
elemdata edata [16];
int neighbors [PREPASS_MOVES];
int tcperm = cornerorder [r];
permcube pc , pc2 ;

for (int i = 0; i < STRIDE; i++) {
elemdata ∗e = edata + i;
int cperm = cornerorder [r + i];

if (cperm 6= tcperm)
error ("! inconsistent corner order") ;

calcneighbors (cperm ,neighbors);

int dp = 0;

for (int mv = 0; mv < NMOVES; mv ++) {
if (¬kocsymm :: in Kociemba group(mv)) continue;
e~ from [dp] = bitp2 [neighbors [dp]];
if (mv ≡ moveseq16 [i]) tcperm = neighbors [dp];
dp ++;

}
if (i ≡ 0) {

for (int j = 0; j < 70; j++) e~e84map [j] = initorder [j];
}
else {

pc = identity pc ;
for (int j = 0; j < 70; j++) {

pc .c8 4 = (e− 1)~e84map [j];
pc .move (moveseq16 [i− 1]);
e~e84map [j] = pc .c8 4 ;
}

}
e~dst = bitp1 [cperm];

}
for (int i = 0; i < 70; i++)

for (int j = 0; j < STRIDE; j++) {
elemdata ∗e = edata + j;

innerloop3 (e~dst , e~ from , e~e84map [i] ∗ 12 ∗ 24);
}

}

20 THE INNER LOOP HCOSET §47

47. We need to initialize the initorder array.

〈 Initialize the program 7 〉 +≡
unsigned char used [70];

memset (initorder , 255, sizeof (initorder));
memset (used , 255, sizeof (used));

int at = 0;

for (int i = 0; i < 70; i++)
if (used [i] ≡ 255) {

permcube pc2 ;

used [i] = 0;
initorder [at ++] = i;
unpack edgecoord (pc , i, 0, 0);
for (int j = 0; j < 15; j++) {

pc2 = pc ;
pc2 .move (moveseq16 [j]);

int e84 = permcube ::c12 8 [pc .et];

if (used [e84] ≡ 255) {
used [e84] = 0;
initorder [at ++] = e84 ;
}

}
}

if (at 6= 70)
error ("! bad setup in setorder()") ;

§48 HCOSET THREADING 21

48. Threading. The fastest search routine is threaded, so we need some objects to manage local state
so it doesn’t interfere with global state. We also build variations of some of the above routines that work
better in a threaded context. Where safe to do so, we leave the routines global, but we do need some local
state. Any routines that use the worker thread, we declare in this CWEB macro. Everything past here, we
write with a careful eye towards threading.

〈Threading objects 48 〉 ≡
struct worker thread {
〈Worker thread object contents 63 〉;
char pad [128]; /∗ make sure these objects don’t share cache lines ∗/
} workers [MAX_THREADS];

See also sections 72 and 73.

This code is used in section 1.

49. Access to the output stream, or any other shared state, requires a global mutex.

〈Data declarations 2 〉 +≡
pthread mutex t my mutex ;

50. We initialize the mutex.

〈 Initialize the program 7 〉 +≡
pthread mutex init (&my mutex ,Λ);

51. We call these methods to acquire and release the mutex.

〈Utility functions 13 〉 +≡
void get global lock ()
{

pthread mutex lock (&my mutex);
}
void release global lock ()
{

pthread mutex unlock (&my mutex);
}

52. If we need to display a position from a bitmap, this is how we do it. Note that sometimes the data
may need to go to a separate file. In addition, we support setting of the level at which sing positions are
written.

〈Utility functions 13 〉 +≡
FILE ∗singfile ;
int singcount ;
int singlevel = 99;

void showsing (const permcube &pc)
{
cubepos cp , cp2 ;

pc .set perm (cp);
cubepos ::mul (cp , repcp , cp2);
if (singfile) fprintf (singfile , "SING %s\n", cp2 .Singmaster string ());
else cout � "SING " � cp2 .Singmaster string ()� endl ;
singcount ++;
}

22 THREADING HCOSET §53

53. We need to parse an argument to set the singfile. In addition

〈More arguments 5 〉 +≡
case ’f’:

if (argc < 2)
error ("! not enough arguments to −f") ;

singfile = fopen (argv [1], "w");
if (singfile ≡ 0)
error ("! can’t open singfile") ;

argc −−;
argv ++;
break;

case ’L’:
if (argc < 2)
error ("! not enough arguments to −L") ;

if (sscanf (argv [1], "%d",&singlevel) 6= 1)
error ("! non−numeric argument to −L") ;

argc −−;
argv ++;
break;

54. At the end we close the singfile and report how many positions were written.

〈Cleanup 54 〉 ≡
if (singfile) {

cout � "Wrote " � singcount � " total positions to singfile" � endl ;
fclose (singfile);
}

See also section 86.

This code is used in section 1.

§55 HCOSET THREADING 23

55. Sometimes we need to scan a page for unset bits, and display the corresponding positions.

〈Utility functions 13 〉 +≡
void showunset (int cperm)
{
int ∗pbits = (int ∗) bitp1 [cperm];
permcube pc ;

pc .c8 4 = cperm/(FACT4 ∗ FACT4);
pc .ctp = cperm/FACT4 % FACT4;
pc .cbp = cperm % FACT4;

int coparity = (permcube ::c8 4 parity [pc .c8 4]⊕ pc .ctp ⊕ pc .cbp) & 1;

for (int i = 0; i < FACT8/8 ∗ 3; i++) {
if (pbits [i] 6= −1) {

int t = ∼pbits [i];

while (t) {
int j = ffs (t)− 1;

t &= t− 1;

int k = (i� 5) + j;
int ep8 4 = k/(24 ∗ 24 ∗ 12);
int epp1 = k/(24 ∗ 12) % 24;
int epp2 = k/24 % 12 ∗ 2;
int emperm = bittoperm [k % 24];
int par0 = (permcube ::c8 4 parity [ep8 4]⊕ epp1 ⊕ emperm ⊕ coparity) & 1;

unpack edgecoord (pc , ep8 4 , epp1 , epp2 + par0);
pc .emp = emperm ;
get global lock ();
showsing (pc);
release global lock ();
}

}
}
}

56. The purpose of the corner order array is to save some memory while we are running, so we don’t
actually need two complete bitmaps in memory at a given time. To make this work, we need to track which
pages have been used how many times; as soon as a page has been used as many times as we expect, we can
free it. This array helps us keep track of that. We also maintain a variable that says where we are in the
cornerorder array.

〈Data declarations 2 〉 +≡
unsigned char use count [FACT8];
int work done ;

24 THREADING HCOSET §57

57. When we want to find the next chunk of pages to work on, we call get prepass work (). If it returns
–1, we are done. This may be multithreaded, so we get the lock. We allocate the destination pages as we
need them; note that we do not need to clear these pages, as the prepass just smashes whatever values it
finds in them.

〈Utility functions 13 〉 +≡
int get prepass work ()
{

get global lock ();

int r = work done ;

if (r < FACT8) {
for (int i = 0; i < STRIDE; i++) bitp1 [cornerorder [r + i]] = getpage ();
work done += STRIDE;

}
release global lock ();
if (r ≥ FACT8) return −1;
return r;
}

58. When we are done with a chunk of work, we track which pages are possibly freeable. We notice a
special uniq value of –1 that indicates we do not need to count bits.

〈Utility functions 13 〉 +≡
void finish prepass work (int cperm)
{
int thisblock = 0;

#ifdef LEVELCOUNTS

int this ulev = 0;
#endif

if (need count bits) {
#ifdef LEVELCOUNTS

if (need count bits > 1) thisblock = countbits2 (cperm , (int ∗) bitp1 [cperm], this ulev);
else

#endif
thisblock = countbits ((unsigned int ∗) bitp1 [cperm]);

}
if (global depth + 1 ≥ singlevel ∧maxsearchdepth < global depth) showunset (cperm);

int neighbors [PREPASS_MOVES];

calcneighbors (cperm ,neighbors);
get global lock ();
uniq += thisblock ;

#ifdef LEVELCOUNTS

uniq ulev += this ulev ;
#endif

for (int i = 0; i < PREPASS_MOVES; i++) {
if ((−−use count [neighbors [i]]) ≡ 0) {

freepage (bitp2 [neighbors [i]]);
bitp2 [neighbors [i]] = 0;

}
}
release global lock ();
}

§59 HCOSET THREADING 25

59. Our main prepass work goes like this. We declare it as it is, so it meets the requirements of pthreads .

〈Utility functions 13 〉 +≡
void ∗do prepass work (void ∗)
{
while (1) {

int r = get prepass work ();

if (r < 0) break;
doouter (r);
for (int i = 0; i < STRIDE; i++) finish prepass work (cornerorder [r + i]);

}
return 0;
}

60. We are finally ready for our full prepass routine. Threading it is straightforward; we don’t need special
state, we just spawn the workers, have them all get work, and do it. Each worker is identical.

〈Utility functions 13 〉 +≡
void doprepass ()
{

uniq = 0;
#ifdef FASTCLEAN

did a prepass = 1;
#endif
#ifdef LEVELCOUNTS

uniq ulev = 0;
#endif

swap(bitp1 , bitp2);
memset (use count , PREPASS_MOVES, sizeof (use count));
work done = 0;
pthread t p thread [MAX_THREADS];
for (int ti = 1; ti < numthreads ; ti ++) pthread create (&(p thread [ti]),Λ, do prepass work , 0);
do prepass work (0);
for (int ti = 1; ti < numthreads ; ti ++) pthread join (p thread [ti], 0);
if (need count bits ≡ 0) cout � "Prepass at " � global depth � " done in " � duration () �

"; unique ?" � endl � flush ;
else cout � "Prepass at " � global depth � " done in " � duration () � "; unique " �

uniq � endl � flush ;
}

61. Our prepass must be used with a search routine that knows it is being used, so it does not repeat the
work that the prepass does. We need a flag to indicate that a prepass is going to be done on this level.

〈Data declarations 2 〉 +≡
int this level did prepass = 0;

26 THREADING HCOSET §62

62. Each search worker thread maintains its own separate pool of statistics, so there is no contention on
shared variables. We also maintain a queue of memory addresses and bits to examine, because we do not
want to get the global lock each time. We define a constant that says how big a batch to use for the address
queue.

〈Utility functions 13 〉 +≡
const int CHECKABITSIZE = 64;
struct checkabit {
unsigned char ∗p;

#ifdef LEVELCOUNTS

unsigned char weight ;
#endif

unsigned char b;
};

§63 HCOSET THREADING 27

63. Our flush routine and its data is now thread-specific.

〈Worker thread object contents 63 〉 ≡
long long local probes ;

#ifdef LEVELCOUNTS

long long local ulev ;
#endif

int bitcount ;
checkabit q[CHECKABITSIZE];

void local bitflush ()
{

get global lock ();

int this uniq = 0;
#ifdef LEVELCOUNTS

int this ulev = 0;
#endif

for (int i = 0; i < bitcount ; i++) {
checkabit &c = q[i];

if (0 ≡ (∗c.p & c.b)) {
∗c.p |= c.b;

#ifdef LEVELCOUNTS

this ulev += c.weight ;
#endif

this uniq ++;
}

}
uniq += this uniq ;
if (uniq > enoughbits ∧ global depth ≡ maxsearchdepth) search terminated early = 1;

#ifdef LEVELCOUNTS

local ulev += this ulev ;
#endif

release global lock ();
local probes += bitcount ;
bitcount = 0;
}
void local initialize ()
{

local probes = 0;
#ifdef LEVELCOUNTS

local ulev = 0;
#endif

bitcount = 0;
〈More thread initialization 65 〉;
}

See also sections 64, 68, and 70.

This code is used in section 48.

28 THREADING HCOSET §64

64. We use a local set a bit routine and a local touched array.

〈Worker thread object contents 63 〉 +≡
unsigned char local touched [FACT8];

void local setonebit (const permcube &pc)
{
int cindex = (pc .c8 4 ∗ FACT4 + pc .ctp) ∗ FACT4 + pc .cbp ;
int epindex = ((permcube ::c12 8 [pc .et] ∗ FACT4) + pc .etp) ∗ FACT4 + pc .ebp ;
int eindex = (epindex � 1) ∗ FACT4 + permtobit [pc .emp];

#ifdef FASTCLEAN

local touched [cindex] = 1;
#endif

if (bitcount ≥ CHECKABITSIZE) local bitflush ();

checkabit &c = q[bitcount];

c.p = bitp1 [cindex] + (eindex � 3);
builtin prefetch (c.p);

#ifdef LEVELCOUNTS

c.weight = levmul [epindex];
#endif

c.b = 1� (eindex & 7);
bitcount ++;
}

65. We need to clear our local touched array.

〈More thread initialization 65 〉 ≡
#ifdef FASTCLEAN

memset (local touched , 0, sizeof (local touched));
#endif

This code is used in section 63.

66. Our fast search routine also supports the ability to exit early, if a particular count of bits set is reached.
We also support the ability to not count bits exactly, requested by −a. Finally, the −F option sets up fast20
mode, which sets the max search depth to 16, the last level to 20, disables counting of the sets that don’t
matter, and sets enoughbits at level 15 based on a heuristic.

〈Data declarations 2 〉 +≡
int search terminated early = 0;
int dont count after max search = 0;
int need count bits = 0;
long long enoughbits = TARGET;
int fast20 ;

§67 HCOSET THREADING 29

67. We set this value with the −e option.

〈More arguments 5 〉 +≡
case ’e’:

if (argc < 2)
error ("! not enough arguments to −e") ;

if (sscanf (argv [1], "%lld",&enoughbits) 6= 1)
error ("! bad arguments to −e") ;

argc −−;
argv ++;
break;

case ’a’: dont count after max search ++;
break;

case ’F’: fast20 ++;
dont count after max search ++;
maxsearchdepth = 16;
maxdepth = 20;
break;

30 THREADING HCOSET §68

68. And now we have our search routine. This is the same as the previous search routine, except it does
not consider solutions that end in moves from H. It turns out that any sequence that does not end in a
move from H, but still ends in the H group, must be at a certain distance from H late in the sequence. For
instance, right before the last move, it must be exactly one move form H. Right before the second to the
last move, it must be exactly two moves from H. Right before the third move, it can be at either two or
three moves from H. Right before the fourth move, it must be at least one move away from H, but no more
than four moves. Otherwise, this is pretty much the same as slowsearch2 .

〈Worker thread object contents 63 〉 +≡
void search (const kocsymm &kc , const permcube &pc , int togo , int movemask , int canon)
{
if (togo ≡ 0) {

if (kc ≡ identity kc) local setonebit (pc);
return;

}
togo −−;

kocsymm kc2 ;
permcube pc2 ;
int newmovemask ;

if (search terminated early) return;
while (movemask) {

int mv = ffs (movemask)− 1;

movemask &= movemask − 1;
kc2 = kc ;
kc2 .move (mv);

int nd = phase1prune :: lookup(kc2 , togo ,newmovemask);

if (nd ≤ togo ∧ (togo ≡ nd ∨ togo + nd ≥ 5 ∨ ¬this level did prepass)) {
pc2 = pc ;
pc2 .move (mv);

int new canon = cubepos ::next cs (canon ,mv);
int movemask3 = newmovemask & cubepos ::cs mask (new canon);

if (togo ≡ 1) { /∗ just do the moves. ∗/
permcube pc3 ;

while (movemask3) {
int mv2 = ffs (movemask3)− 1;

movemask3 &= movemask3 − 1;
pc3 = pc2 ;
pc3 .move (mv2);
local setonebit (pc3);

}
}
else {

search (kc2 , pc2 , togo ,movemask3 ,new canon);
}

}
}
}

§69 HCOSET THREADING 31

69. Our worker threads get work parcels. A work parcel is an initial set of two moves to work with. Note
that if the starting depth is three or less, we do not even bother to spread the work.

〈Utility functions 13 〉 +≡
int search work seq ;

int get search work ()
{

get global lock ();

int r = −1;

while (1) {
r = search work seq ++;
if (r ≥ NMOVES ∗ NMOVES) {

r = −1;
break;

}
int mv1 = r/NMOVES;
int mv2 = r % NMOVES;
int s = cubepos ::next cs (CANONSEQSTART,mv1);
int mask = cubepos ::cs mask (s);

if ((mask � mv2) & 1) break;
}
release global lock ();
return r;
}

32 THREADING HCOSET §70

70. The worker thread gets work until there’s no more to be gotten.

〈Worker thread object contents 63 〉 +≡
void dowork ()
{

local initialize ();
if (global depth ≤ 3) {

search (repkc , reppc , global depth , ALLMOVEMASK, CANONSEQSTART);
}
else {
while (1) {

int movepair = get search work ();

if (movepair < 0) break;

int mv1 = movepair /NMOVES;
int mv2 = movepair % NMOVES;
kocsymm kc(repkc);
permcube pc(reppc);

kc .move (mv1);
pc .move (mv1);
kc .move (mv2);
pc .move (mv2);

int s = cubepos ::next cs (CANONSEQSTART,mv1);

s = cubepos ::next cs (s,mv2);

int mask ;

phase1prune :: lookup(kc , global depth − 2,mask);
search (kc , pc , global depth − 2,mask & cubepos ::cs mask (s), s);

}
}
local bitflush ();
get global lock ();
probes += local probes ;

#ifdef LEVELCOUNTS

uniq ulev += local ulev ;
#endif
#ifdef FASTCLEAN

for (int i = 0; i < FACT8; i++) touched [i] |= local touched [i];
#endif

release global lock ();
}

71. If the slow value is greater than 1, we use the normal fast search.

〈Handle one coset from movestring 8 〉 +≡
if (slow > 1) search ();

§72 HCOSET THREADING 33

72. This is the pthread -compatible worker.

〈Threading objects 48 〉 +≡
void ∗do search work (void ∗s)
{
worker thread ∗w = (worker thread ∗) s;

w~dowork ();
return 0;
}

34 THREADING HCOSET §73

73. Our outer routine for the fast search is here. The rules for doing prepass are moderately complex. We
require a minimum count of six million set bits (otherwise search is faster than prepass). For once, we have
a routine that might terminate, so we need to check for that.

〈Threading objects 48 〉 +≡
void search ()
{

duration ();
for (int d = phase1prune :: lookup(repkc); d ≤ maxdepth ; d++) {

global depth = d;
probes = 0;

long long prevlev = uniq ;
#ifdef LEVELCOUNTS

long long prev ulev = uniq ulev ;
#endif

this level did prepass = ¬disable prepass ∧ d > 1 ∧ (uniq > 6000000 ∨ d > maxsearchdepth);
if (this level did prepass) {

need count bits = (d ≤ maxsearchdepth ∨ ¬dont count after max search);
#ifdef LEVELCOUNTS

if (d ≤ maxsearchdepth) need count bits ++;
#endif

doprepass ();
}
else {

need count bits = 1;
}
if (uniq ≡ TARGET) break;
search work seq = 0;
search terminated early = 0;

int did full search = 0;

if (fast20 ∧ d ≡ 16) enoughbits = 167000000 + uniq/3;
if (d ≤ maxsearchdepth) {

did full search = 1;
if (d ≤ 3) {

workers [0].dowork ();
}
else {

pthread t p thread [MAX_THREADS];
for (int ti = 1; ti < numthreads ; ti ++)

pthread create (&(p thread [ti]),Λ, do search work ,&workers [ti]);
workers [0].dowork ();
for (int ti = 1; ti < numthreads ; ti ++) pthread join (p thread [ti], 0);
}

}
if (search terminated early) {

cout � "Terminated search at level " � d� " early due to enoughbits" � endl ;
if (dont count after max search) need count bits = 0;
did full search = 0;

}
long long thislev = uniq − prevlev ;

#ifdef LEVELCOUNTS

long long thisulev = uniq ulev − prev ulev ;

§73 HCOSET THREADING 35

#endif

if (global depth + 1 ≥ singlevel ∧maxsearchdepth ≥ global depth)
for (int cperm = 0; cperm < FACT8; cperm ++) showunset (cperm);

if (verbose) {
#ifdef LEVELCOUNTS

if (need count bits ≡ 0) cout � "Tests at " � d� " " � probes � " in " � duration ()�
" uniq ? lev ?" � endl ;

else if (did full search)
cout � "Tests at " � d � " " � probes � " in " � duration () � " uniq " � uniq �

" lev " � thislev � " utot " � uniq ulev � " thisulev " � thisulev � endl ;
else cout � "Tests at " � d� " " � probes � " in " � duration ()� " uniq " � uniq �

" lev " � thislev � endl ;
#else

if (did full search) cout � "Tests at " � d � " " � probes � " in " � duration () �
" uniq " � uniq � " lev " � thislev � endl ;

else cout � "Tests at " � d� " " � probes � " in " � duration ()� " uniq ?" � endl ;
#endif

}
#ifdef LEVELCOUNTS

if (did full search) sum ulev [d] += thisulev ;
#endif

}
}

74. Finally, at the end of the docoset routine, we free up the memory we allocated. In the case of
FASTCLEAN, we only free the touched pages in the first bitmap.

〈Handle one coset from movestring 8 〉 +≡
int delta = singcount − oldsingcount ;

if (singfile) cout � "Wrote " � delta � " sing positions." � endl ;
for (int i = 0; i < FACT8; i++) {

#ifdef FASTCLEAN

if (bitp1 [i] 6= 0 ∧ (touched [i] ∨ did a prepass)) {
freepage (bitp1 [i]);
bitp1 [i] = 0;

}
#else

if (bitp1 [i] 6= 0) {
freepage (bitp1 [i]);
bitp1 [i] = 0;

}
#endif

if (bitp2 [i] 6= 0) {
freepage (bitp2 [i]);
bitp2 [i] = 0;

}
}
cout � "Finished in " � (walltime ()− cosetstart)� endl ;

36 COSET COVER HCOSET §75

75. Coset cover. This program works with the H coset, which only has 16-way symmetry. The full
cube has 48-way symmetry, however, and it would be nice to take advantage of the full symmetry of the
cube in reducing the problem size of proving a 20 bound. In order to make this happen, we need to compute
a small covering set of H cosets that, when all the positions and their reorientations are taken into account,
cover the complete cube space.

We have computed such a cover, and by solving only about 56 million out of the 138 million symmetry-
unique H-cosets, we can prove a bound of 20f*; this reduces our total work by about 60%, so it is an
important optimization.

The actual generation of this cover is beyond the scope of this program. However, we do embed the cover
into the program. The cover is stored as a file called bestsol .h and creates an array bestsol that contains a
value 0 if that coset is not to be computed, 1 if that coset should be completed on the first pass, and a 2
if that coset should be completed on the second pass. The first pass cosets, taken together, are enough to
prove a bound of 21f*; first and second pass together cover the entire space to prove a bound of 20f*.

〈Data declarations 2 〉 +≡
#include "bestsol.h"

76. The bestsol array is in lexicographical order of symmetry-reduced edge permutation plus orientation;
thus, there are about 65,000 entries. We index the cosets that are represented by these solutions, putting
the phase one cosets first, and then the phase two cosets. We index the cosets so managing large batch
runs of this program is easier; we can simply specify a range of cosets to run, and similarly, keep track of
the range of cosets that have been completed. We use the −r option to pick up that range. Note that the
TOTALCOSETS value is a magic number from our cover solution.

〈Data declarations 2 〉 +≡
int first coset ;
const int TOTALCOSETS = 55882296;
int coset count ;

77. This is where we parse the option.

〈More arguments 5 〉 +≡
case ’r’:

if (argc < 3)
error ("! not enough arguments to −r") ;

if (sscanf (argv [1], "%d",&first coset) 6= 1 ∨ sscanf (argv [2], "%d",&coset count) 6= 1)
error ("! bad arguments to −r") ;

argc −= 2;
argv += 2;
if (first coset < 0 ∨ first coset ≥ TOTALCOSETS)
error ("! bad first value to −r") ;

if (coset count ≤ 0)
error ("! bad coset count specified to −r") ;

if (coset count + first coset > TOTALCOSETS) coset count = TOTALCOSETS − first coset ;
break;

§78 HCOSET COSET COVER 37

78. As we generate the cosets, we will generate kocsymm objects indicating the coset to solve. This
routine evaluates the coset, turns it into a move sequence, and calls the main docoset routine with that move
string. We need to forward-declare the main docoset routine here, too.

〈Utility functions 13 〉 +≡
const int U2 = 1;
void docoset (int seq , const char ∗movestring); /∗ forward declaration ∗/
void docoverelement (int seq , const kocsymm &kc)
{
int d = phase1prune :: lookup(kc);

if (d > maxdepth) /∗ skip if too deep ∗/
return;

moveseq moves = phase1prune ::solve (kc);

moves = cubepos :: invert sequence (moves);
if (moves .size () ≡ 0) {

moves .push back (U2);
moves .push back (U2);

}
char buf [160];

strcpy (buf , cubepos ::moveseq string (moves));
docoset (seq , buf);
}

79. To make the indexing go faster, we keep track of the count of symmetry-reduced cosets for any single
value of combined edge coordinate.

〈Data declarations 2 〉 +≡
map〈int, int〉 symcount ;

38 COSET COVER HCOSET §80

80. The subroutine that generates the cosets is here. We need to make sure the phase 1 pruning table is
initialized at the start.

〈Utility functions 13 〉 +≡
int bestsollookup [EDGEOSYMM ∗ EDGEPERM];

unsigned int orderkc(const kocsymm &kc)
{
return (kc .epsymm � 11) + kc .eosymm ;
}
int lookupkc(const kocsymm &kc)
{
return bestsollookup [(kc .epsymm � 11) + kc .eosymm];
}
void genseqs (int lo , int hi)
{

phase1prune :: init ();

cubepos cp , cp2 ;
int tot = 0;
int c = 0;

for (int eo = 0; eo < EDGEOSYMM; eo ++)
for (int ep = 0; ep < EDGEPERM; ep ++) {
kocsymm kc(0, eo , ep);
kocsymm kc2 ;

kc .canon into(kc2);
if (kc ≡ kc2) bestsollookup [orderkc(kc)] = bestsol [c++];
else bestsollookup [orderkc(kc)] = bestsollookup [orderkc(kc2)];

}
for (int match = 2; match > 0; match −−) {
int c = 0;

for (int eo = 0; eo < EDGEOSYMM; eo ++) {
for (int ep = 0; ep < EDGEPERM; ep ++) {
kocsymm kc(0, eo , ep);
kocsymm kc2 ;

kc .canon into(kc2);
if (¬(kc ≡ kc2)) continue;
if (bestsol [c] 6= match) {
c++;
continue;

}
int cnt = 1;

kc .set coset (cp);
for (int m = 1; m < 16; m++) {

cp .remap into(m, cp2);

kocsymm kc2 (cp2);

if (kc2 ≡ kc) cnt |= 1� m;
}
if (tot + CORNERSYMM < lo ∨ tot ≥ hi) {
if (cnt ≡ 1) {

tot += CORNERSYMM;
c++;

§80 HCOSET COSET COVER 39

continue;
}
else if (symcount .find (cnt) 6= symcount .end ()) {

tot += symcount [cnt];
c++;
continue;

}
}
int tcnt = 0;

for (int co = 0; co < CORNERSYMM; co ++) {
kc .csymm = co ;

int okay = 1;

kc .set coset (cp);
for (int m = 1; okay ∧m < 16; m++) {

if (0 ≡ ((cnt � m) & 1)) continue;
cp .remap into(m, cp2);

kocsymm kc2 (cp2);

if (kc2 < kc) okay = 0;
}
if (okay) {
if (tot ≥ lo ∧ tot < hi) docoverelement (tot , kc);
tcnt ++;
tot ++;

}
}
symcount [cnt] = tcnt ;
c++;
}

}
}
if (tot 6= TOTALCOSETS)
error ("! mistake in computation of total cosets") ;

}

81. We are ready to fill in our work handling routine. If the −r option was not specified, we expect a
single coset on the command line. If there is no argument, we assume we want to run all cosets.

〈Handle the work 81 〉 ≡
if (argc > 1) {

docoset (0, argv [1]);
}
else {
if (coset count ≡ 0) coset count = TOTALCOSETS;
genseqs (first coset ,first coset + coset count);
}

This code is used in section 1.

40 COSET COVER HCOSET §82

82. Our next major concern is using this coset solver to compute the exact count of cube positions at each
distance—overall. If this matches the known results, that provides some validation that this program, the
cover, and the execution are all correct. In addition, we hope to extend the known results. The prior known
results were through 11f*. I extended those using a coset approach to 12f* and 13f*, and just today as I
write this, someone else who goes by the username tscheunemann on the cube lovers forum extended the
results to 14f*. With this program, I hope to take it to 15f*.

This is all a bit involved and tricky, however. We need to make sure we don’t double count positions that
exist in more than one of the cosets we plan to solve. Further, we need to make sure to handle symmetrical
positions correctly. Luckily, our cover solution is built-in to this program, so we can do both.

Temporarily, we bracket this code with preprocessor directives so we can benchmark the program both
with and without this feature, to see what the overall impact is.

The cover we use is based on the edge orientation, and on the location of the four middle edge cubies; we
do not distinguish by corner orientation. Our overall edge permutation information is based on top, middle,
and edge cubies; this does not exhibit the same 48-way symmetry as the cube itself. For efficiency, we provide
an array that lets us convert our edge up/down permutation information to sets of edge permutations that
share the same left/right edge occupancy and front/back edge occupancy, since this is what defines the
subgroups that correspond to intersections of rotated Kociemba-group subsets. We also declare the array
that will contain the eventual contribution of each edge permutation to our overall level count.

〈Data declarations 2 〉 +≡
#ifdef LEVELCOUNTS

long long levprev , levuniq , levsum ;
char levmul [FACT8];
int k3map [FACT8];

#endif

83. The routine that initialies the k3map is next.

〈Utility functions 13 〉 +≡
#ifdef LEVELCOUNTS

void setupk3map()
{
int lookaside [1� 12];

memset (lookaside ,−1, sizeof (lookaside));

int ind = 0;
cubepos cp ;
permcube pc ;

for (int e8 4 = 0; e8 4 < C8_4; e8 4 ++) {
for (int epp1 = 0; epp1 < FACT4; epp1 ++) {

for (int epp2 = 0; epp2 < FACT4; epp2 ++, ind ++) {
unpack edgecoord (pc , e8 4 , epp1 , epp2);
pc .set perm (cp);

int key = (1� (cp .e[0]/2)) | (1� (cp .e[3]/2)) | (1� (cp .e[8]/2)) | (1� (cp .e[11]/2));

if (lookaside [key] < 0) lookaside [key] = ind ;
k3map [ind] = lookaside [key];
}

}
}
}

#endif

§84 HCOSET COSET COVER 41

84. We only need to call this once.

〈 Initialize the program 7 〉 +≡
#ifdef LEVELCOUNTS

setupk3map();
#endif

42 COSET COVER HCOSET §85

85. Next, we have the code that calculates the weight for the edge permutations from a particular coset.

〈Utility functions 13 〉 +≡
#ifdef LEVELCOUNTS

void setup levmul (const kocsymm &kc , const moveseq &moves)
{
int x = kc .calc symm ();

memset (levmul , 48/x, sizeof (levmul));

int ind = 0;

for (int e8 4 = 0; e8 4 < 70; e8 4 ++)
for (int epp1 = 0; epp1 < FACT4; epp1 ++)

for (int epp2 = 0; epp2 < FACT4; epp2 ++, ind ++) {
permcube pc ;

if (k3map [ind] 6= ind) {
levmul [ind] = levmul [k3map [ind]];

}
else {
cubepos cpt , cp2 , cp3 ;

unpack edgecoord (pc , e8 4 , epp1 , epp2);
pc .set perm (cp2);
for (unsigned int i = 0; i < moves .size (); i++) cp2 .move (moves [i]);
for (int i = 0; i < 8; i++) cp2 .c[i] = cubepos ::corner val (i, 0);
cp2 .invert into(cpt);
cpt .remap into(16, cp2);

kocsymm kc3 (cp2);
kocsymm kc1 ;
kocsymm kc2 (cpt);

kc2 .canon into(kc1);
kc3 .canon into(kc2);
cpt .remap into(32, cp2);

kocsymm kct (cp2);

kct .canon into(kc3);
if ((orderkc(kc2) < orderkc(kc1) ∧ lookupkc(kc2)) ∨ (orderkc(kc3) <

orderkc(kc1) ∧ lookupkc(kc3))) {
levmul [ind] = 0;

}
else {
int d = 1;

if (kc1 ≡ kc2) d++;
if (kc1 ≡ kc3) d++;
levmul [ind] = 48/(x ∗ d);

}
}
}

}
#endif

§86 HCOSET COSET COVER 43

86. If we counted levels, give the results here right at the end.

〈Cleanup 54 〉 +≡
#ifdef LEVELCOUNTS

for (unsigned int i = 0; i < sizeof (sum ulev)/sizeof (sum ulev [0]); i++)
if (sum ulev [i]) cout � "Level " � i� " count " � sum ulev [i]� endl ;

#endif

builtin prefetch : 24, 64.
a: 38, 41, 45.
ALLMOVEMASK: 14, 27, 70.
argc : 1, 3, 11, 53, 67, 77, 81.
argv : 1, 3, 11, 53, 67, 77, 81.
at : 47.
b: 62.
BANNER: 1, 7.
base : 37.
bc : 39, 40, 41.
bestsol : 75, 76, 80.
bestsollookup : 80.
bitcount : 63, 64.
bitp1 : 15, 16, 20, 24, 46, 55, 57, 58, 60, 64, 74.
bitp2 : 15, 16, 29, 46, 58, 60, 74.
bittoperm : 21, 22, 31, 55.
buf : 78.
B2: 31, 33.
c: 63, 64, 80.
calc symm : 85.
calcneighbors : 45, 46, 58.
calloc : 16.
canon : 13, 25, 68.
canon into : 80, 85.
CANONSEQSTART: 14, 27, 69, 70.
cbp : 24, 45, 55, 64.
check integrity : 1.
checkabit: 62, 63, 64.
CHECKABITSIZE: 62, 63, 64.
cindex : 24, 64.
cnt : 80.
co : 80.
coord : 28, 41.
coparity : 41, 55.
corder order : 46.
corner order : 44.
corner val : 85.
cornerorder : 44, 46, 56, 57, 59.
CORNERSYMM: 80.
coset count : 76, 77, 81.
cosetstart : 8, 74.
countbits : 38, 58.
countbits2 : 41, 58.
cout : 1, 7, 8, 14, 27, 52, 54, 60, 73, 74, 86.
cp : 52, 80, 83.

cperm : 41, 45, 46, 55, 58, 73.
cpp : 37.
cpt : 85.
cp2 : 52, 80, 85.
cp3 : 85.
cs mask : 13, 25, 68, 69, 70.
csymm : 80.
ctp : 24, 45, 55, 64.
cubepos: 6, 8, 13, 25, 52, 68, 69, 70, 78, 80, 83, 85.
c12 8 : 24, 36, 47, 64.
c8 12 : 28.
c8 4 : 24, 45, 46, 55, 64.
C8_4: 36, 41, 83.
c8 4 parity : 41, 55.
d: 14, 27, 73, 78, 85.
delta : 74.
did a prepass : 19, 20, 60, 74.
did full search : 73.
disable prepass : 29, 30, 73.
do prepass work : 59, 60.
do search work : 72, 73.
docoset : 1, 74, 78, 81.
docoverelement : 78, 80.
dont count after max search : 66, 67, 73.
doouter : 46, 59.
doprepass : 60, 73.
dowork : 70, 72, 73.
dp : 46.
dst : 37, 42, 46.
duration : 1, 14, 27, 60, 73.
e: 46.
eb : 28.
ebp : 24, 28, 36, 64.
edata : 46.
EDGEOSYMM: 80.
EDGEPERM: 80.
eindex : 24, 64.
elemdata: 42, 46.
em : 28.
emp : 24, 31, 33, 55, 64.
emperm : 55.
end : 37, 80.
endl : 1, 7, 8, 14, 27, 52, 54, 60, 73, 74, 86.
enoughbits : 63, 66, 67, 73.
eo : 80.

44 COSET COVER HCOSET §86

eosymm : 80.
ep : 80.
eperm map : 35, 36, 37.
epindex : 64.
epp1 : 28, 36, 41, 55, 83, 85.
epp2 : 28, 36, 41, 55, 83, 85.
epsymm : 80.
epsymm compress : 28.
epsymm expand : 28.
ep8 4 : 55.
et : 24, 28, 36, 47, 64.
etp : 24, 28, 36, 64.
e8 4 : 28, 36, 41, 83, 85.
e84 : 47.
e84map : 42, 46.
FACT4: 15, 17, 21, 22, 24, 28, 31, 33, 36, 41,

45, 55, 64, 83, 85.
FACT8: 15, 16, 17, 19, 20, 35, 55, 56, 57, 64,

70, 73, 74, 82.
FASTCLEAN: 19, 20, 24, 60, 64, 65, 70, 74.
fast20 : 66, 67, 73.
fclose : 54.
ffs : 13, 25, 55, 68.
find : 80.
finish prepass work : 58, 59.
first coset : 76, 77, 81.
flush : 7, 60.
flushbit : 24, 27.
fopen : 53.
fprintf : 52.
freepage : 18, 58, 74.
from : 42, 46.
F2: 31.
genseqs : 80, 81.
get global lock : 51, 55, 57, 58, 63, 69, 70.
get prepass work : 57, 59.
get search work : 69, 70.
getclearedpage : 18, 20.
getpage : 18, 57.
global depth : 10, 58, 60, 63, 70, 73.
hi : 80.
i: 7, 9, 20, 22, 31, 33, 34, 38, 40, 46, 47, 55, 57,

58, 59, 63, 70, 74, 85, 86.
identity cube : 9.
identity kc : 9, 13, 25, 68.
identity pc : 9, 46.
in Kociemba group : 36, 45, 46.
ind : 36, 41, 83, 85.
init : 8, 80.
initorder : 46, 47.
innerloop3 : 37, 46.
insert : 13.

invert into : 85.
invert sequence : 78.
j: 46, 47, 55.
k: 55.
kc : 13, 14, 25, 27, 68, 70, 78, 80, 85.
kct : 85.
kc1 : 85.
kc2 : 13, 25, 68, 80, 85.
kc3 : 85.
key : 83.
kocsymm: 6, 9, 13, 14, 25, 27, 28, 35, 36, 45,

46, 68, 70, 78, 80, 85.
k3map : 82, 83, 85.
LEVELCOUNTS: 9, 17, 20, 39, 40, 41, 58, 60, 62, 63,

64, 70, 73, 82, 83, 84, 85, 86.
levmul : 41, 64, 82, 85.
levprev : 82.
levsum : 82.
levuniq : 82.
lo : 80.
local bitflush : 63, 64, 70.
local initialize : 63, 70.
local probes : 63, 70.
local setonebit : 64, 68.
local touched : 64, 65, 70.
local ulev : 63, 70.
lookaside : 83.
lookup : 13, 14, 25, 27, 68, 70, 73, 78.
lookupkc : 80, 85.
lowb : 33.
L2: 31, 33.
m: 80.
main : 1.
malloc : 18.
map: 79.
mask : 69, 70.
mask1 : 38.
mask2 : 38.
mask3 : 38.
match : 80.
MAX_THREADS: 2, 3, 48, 60, 73.
maxdepth : 10, 11, 67, 73, 78.
maxsearchdepth : 10, 11, 14, 27, 58, 63, 67, 73.
memset : 18, 20, 47, 60, 65, 83, 85.
move : 9, 13, 25, 31, 33, 36, 45, 46, 47, 68, 70, 85.
movemask : 13, 25, 68.
movemask3 : 25, 68.
movepair : 70.
moves : 78, 85.
moveseq: 6, 78, 85.
moveseq string : 78.
moveseq16 : 46, 47.

§86 HCOSET COSET COVER 45

movestring : 1, 8, 78.
mul : 52.
mv : 13, 25, 36, 45, 46, 68.
mvi : 33, 36.
mvs : 33.
mv1 : 69, 70.
mv2 : 25, 68, 69, 70.
my mutex : 49, 50, 51.
nd : 13, 25, 68.
need count bits : 58, 60, 66, 73.
neighbors : 46, 58.
new canon : 13, 25, 68.
newmovemask : 13, 25, 68.
next cs : 13, 25, 68, 69, 70.
NMOVES: 36, 45, 46, 69, 70.
numthreads : 2, 3, 60, 73.
oargc : 3, 7.
oargv : 3, 7.
off1 : 41.
off2 : 41.
okay : 80.
oldsingcount : 8, 74.
orderkc : 80, 85.
p: 33, 62.
p thread : 60, 73.
pad : 48.
pageq : 18.
PAGESIZE: 15, 18, 38.
parity : 41.
parse moveseq : 8.
par0 : 55.
pbits : 55.
pc : 13, 14, 24, 25, 27, 28, 31, 33, 36, 45, 46, 47,

52, 55, 64, 68, 70, 83, 85.
pc2 : 13, 25, 45, 46, 47, 68.
pc3 : 25, 68.
permcube: 6, 13, 14, 24, 25, 27, 28, 31, 36, 41,

45, 46, 47, 52, 55, 64, 68, 70, 83, 85.
permtobit : 21, 22, 24, 31, 33, 64.
phase1prune : 1, 8, 13, 14, 25, 27, 68, 70, 73, 78, 80.
pop back : 18.
PREPASS_MOVES: 35, 37, 42, 46, 58, 60.
prev ulev : 73.
prevlev : 14, 27, 73.
probes : 13, 14, 17, 24, 27, 70, 73.
progstart : 1.
pthread : 72.
pthread create : 60, 73.
pthread join : 60, 73.
pthread mutex init : 50.
pthread mutex lock : 51.
pthread mutex t : 49.

pthread mutex unlock : 51.
pthread t : 60, 73.
pthreads : 59.
push back : 18, 78.
p2 : 41.
q: 63.
r: 18, 38, 41, 46, 57, 59, 69.
rearrange : 32, 33, 34, 37.
release global lock : 51, 55, 57, 58, 63, 69, 70.
remap into : 80, 85.
repcp : 6, 9, 52.
repkc : 6, 9, 12, 14, 26, 27, 70, 73.
reppc : 6, 9, 12, 26, 70.
repseq : 6, 8, 9.
rv2 : 41.
r2 : 41.
R2: 31, 33.
s: 69, 70, 72.
saveb : 23, 24.
savep : 23, 24.
search : 68, 70, 71, 73.
search terminated early : 63, 66, 68, 73.
search work seq : 69, 73.
seq : 1, 8, 78.
set: 6, 15.
set coset : 80.
set perm : 52, 83, 85.
setbit : 31.
setonebit : 24, 25.
setup levmul : 9, 85.
setupk3map : 83, 84.
showsing : 52, 55.
showunset : 55, 58, 73.
singcount : 8, 52, 54, 74.
singfile : 52, 53, 54, 74.
singlevel : 52, 53, 58, 73.
Singmaster string : 52.
size : 9, 14, 18, 78, 85.
skipwrite : 4, 5, 8.
slow : 10, 11, 12, 26, 71.
slowsearch1 : 12, 13, 14.
slowsearch2 : 25, 26, 27, 68.
solve : 78.
SQMOVES: 32, 33.
srcs : 37.
sscanf : 3, 11, 53, 67, 77.
std: 1.
strcpy : 78.
STRIDE: 43, 46, 57, 59.
sum ulev : 17, 73, 86.
swap : 60.
symcount : 79, 80.

46 COSET COVER HCOSET §86

s1 : 38.
s2 : 38.
t: 55.
TARGET: 17, 66, 73.
tcnt : 80.
tcperm : 46.
this level did prepass : 61, 68, 73.
this ulev : 58, 63.
this uniq : 63.
thisblock : 58.
thislev : 14, 27, 73.
thisulev : 73.
ti : 60, 73.
tmp : 8.
togo : 13, 25, 68.
tot : 80.
TOTALCOSETS: 76, 77, 80, 81.
touched : 19, 20, 24, 70, 74.
tscheunemann : 82.
tval : 37.
TWISTS: 31.
uniq : 14, 17, 20, 24, 27, 58, 60, 63, 73.
uniq ulev : 17, 20, 58, 60, 70, 73.
unpack edgecoord : 28, 36, 47, 55, 83, 85.
use count : 56, 58, 60.
used : 47.
U2: 78.
vector: 15, 18.
verbose : 2, 3, 7, 14, 27, 73.
v1 : 41.
v2 : 41.
w: 41, 72.
walltime : 1, 8, 74.
wb2 : 37.
weight : 62, 63, 64.
wf2 : 37.
wl2 : 37.
work done : 56, 57, 60.
worker thread: 48, 72.
workers : 48, 73.
world : 6, 13, 14.
wr2 : 37.
w1 : 38.
w2 : 38.
w3 : 38.
x: 85.

HCOSET NAMES OF THE SECTIONS 47

〈Cleanup 54, 86 〉 Used in section 1.

〈Data declarations 2, 4, 6, 10, 15, 17, 19, 21, 23, 29, 32, 35, 39, 43, 44, 49, 56, 61, 66, 75, 76, 79, 82 〉 Used in section 1.

〈Handle one coset from movestring 8, 9, 12, 20, 26, 71, 74 〉 Used in section 1.

〈Handle the work 81 〉 Used in section 1.

〈 Initialize the program 7, 16, 22, 31, 33, 34, 36, 40, 47, 50, 84 〉 Used in section 1.

〈More arguments 5, 11, 30, 53, 67, 77 〉 Used in section 3.

〈More thread initialization 65 〉 Used in section 63.

〈Parse arguments 3 〉 Used in section 1.

〈Threading objects 48, 72, 73 〉 Used in section 1.

〈Utility functions 13, 14, 18, 24, 25, 27, 28, 37, 38, 41, 42, 45, 46, 51, 52, 55, 57, 58, 59, 60, 62, 69, 78, 80, 83, 85 〉 Used

in section 1.

〈Worker thread object contents 63, 64, 68, 70 〉 Used in section 48.

〈 hcoset.cpp 1 〉

HCOSET

Section Page
Introduction . 1 1
Prepass . 29 12
The inner loop . 37 15
Threading . 48 21
Coset cover . 75 36

	Introduction
	Prepass
	The inner loop
	Threading
	Coset cover
	Names of the sections
	Cleanup
	Data declarations
	Handle one coset from movestring
	Handle the work
	Initialize the program
	More arguments
	More thread initialization
	Parse arguments
	Threading objects
	Utility functions
	Worker thread object contents
	hcoset.cpp

