From mschoene@math.rwth-aachen.de Mon Dec 4 09:10:17 1995
Return-Path:
Received: from hurin.math.rwth-aachen.de by life.ai.mit.edu (4.1/AI-4.10) for /com/archive/cube-lovers id AA23100; Mon, 4 Dec 95 09:10:17 EST
Received: from samson.math.rwth-aachen.de by hurin.math.rwth-aachen.de with smtp
(Smail3.1.28.1 #30) id m0tMZOr-0009KuC.951204.150809; Mon, 4 Dec 95 12:49 MET
Received: from hobbes.math.rwth-aachen.de by samson.math.rwth-aachen.de with smtp
(Smail3.1.28.1 #11) id m0tMZOr-000I7wC; Mon, 4 Dec 95 12:49 MET
Received: by hobbes.math.rwth-aachen.de (Smail3.1.28.1 #26)
id m0tMZOq-0009ejC.951204.124936; Mon, 4 Dec 95 12:49 MET
Message-Id:
Date: Mon, 4 Dec 95 12:49 MET
From: Martin Schoenert
To: hoey@aic.nrl.navy.mil
Cc: Cube-Lovers@life.ai.mit.edu
In-Reply-To: hoey@aic.nrl.navy.mil's message of Sun, 3 Dec 95 14:46:30 EST
<9512031946.AA24122@sun13.aic.nrl.navy.mil>
Subject: Re: Re: Generating Rubik's Cube
I have used GAP to compute the subgroup generated by 300 random pairs of
elements of G. 151 of those pairs generated the entire group, so the
probability is about 50%.
I don't think we can figure out the exact number, since we don't know the
maximal subgroups of G. One maximal subgroup we know is the derived
subgroup (on which the upper bound of 75% is based). Then there are the
8 stabilizers of the corners (of index 8) and the 12 stabilizers of the
edges (of index 12). Using those it should be possible to push the upper
bound down to something about 60%.
Martin.
-- .- .-. - .. -. .-.. --- ...- . ... .- -. -. .. -.- .-
Martin Sch"onert, Martin.Schoenert@Math.RWTH-Aachen.DE, +49 241 804551
Lehrstuhl D f"ur Mathematik, Templergraben 64, RWTH, 52056 Aachen, Germany